Sufficient conditions for the solvability of the Urysohn integral equation on a half-line

被引:5
|
作者
Khachatryan, Kh. A. [1 ]
机构
[1] Armenian Acad Sci, Inst Math, Yerevan 0019, Armenia
关键词
Integral Equation; Radiative Transfer; DOKLADY Mathematic; Integral Sign; Nondecreasing Function;
D O I
10.1134/S1064562409020264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A study was conducted to demonstrate sufficient conditions for the solvability of the Urysohn integral equation on a half-line. The Urysohn integral equation on a half line with the unknown function had a nonnegative continuous function with the property that there exist a number η > 0. This integral equation can be used for various applications in mathematical physics, radiative transfer theory, the kinetic theory of gases, continuum mechanics, and econometrics. It was observed that the limit of the solution was found at infinity and a lower bound for the solution was given using VA Ambartsumyan's function. It was also found that Ambartsumyan functions satisfied the system of nonlinear functional equations.
引用
下载
收藏
页码:246 / 249
页数:4
相关论文
共 50 条
  • [1] Sufficient conditions for the solvability of the Urysohn integral equation on a half-line
    Kh. A. Khachatryan
    Doklady Mathematics, 2009, 79 : 246 - 249
  • [2] On the Solvability of a Class of Nonlinear Urysohn Integral Equations on the Positive Half-line
    Khachatryan, Kh A.
    Petrosyan, H. S.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2021, 36 : 57 - 68
  • [3] Solvability of Urysohn integral equation
    El-Sayed, WG
    El-Bary, AA
    Darwish, MA
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) : 487 - 493
  • [4] Necessary and sufficient conditions for the solvability of an inverse problem for systems of differential equations on a half-line
    Yurko, VA
    DOKLADY MATHEMATICS, 2004, 69 (03) : 465 - 468
  • [5] INTEGRAL CONDITIONS FOR NONUNIFORM μ-DICHOTOMY ON THE HALF-LINE
    Bento, Antonio J. G.
    Lupa, Nicolae
    Megan, Mihail
    Silva, Cesar M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (08): : 3063 - 3077
  • [6] Solvability and Fredholm Properties of Integral Equations on the Half-Line in Weighted Spaces
    Simon N. Chandler-Wilde
    Kai O. Haseloh
    Integral Equations and Operator Theory, 2005, 51 : 5 - 34
  • [7] Solvability and fredholm properties of integral equations on the half-line in weighted spaces
    Chandler-Wilde, SN
    Haseloh, KO
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (01) : 5 - 34
  • [8] Existence of positive solutions for fractional differential equation with integral boundary conditions on the half-line
    Mei Jia
    Haibin Zhang
    Qiang Chen
    Boundary Value Problems, 2016
  • [9] Existence of positive solutions for fractional differential equation with integral boundary conditions on the half-line
    Jia, Mei
    Zhang, Haibin
    Chen, Qiang
    BOUNDARY VALUE PROBLEMS, 2016,
  • [10] On the Solvability of a System of Nonlinear Integral Equations with the Hammerstein–Stieltjes Operator on the Half-Line
    Kh. A. Khachatryan
    H. S. Petrosyan
    Differential Equations, 2023, 59 : 383 - 391