Radiation damage tolerant nanomaterials

被引:469
|
作者
Beyerlein, I. J. [1 ]
Caro, A.
Demkowicz, M. J. [2 ]
Mara, N. A. [1 ]
Misra, A. [1 ]
Uberuaga, B. P. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
THERMAL-STABILITY; GRAIN-BOUNDARIES; ION IRRADIATION; HIGH-STRENGTH; HELIUM; METALS; MECHANISMS; ALLOYS; NANO; NANOCLUSTERS;
D O I
10.1016/j.mattod.2013.10.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing a material from the atomic level to achieve a tailored response in extreme conditions is a grand challenge in materials research. Nanostructured metals and composites provide a path to this goal because they contain interfaces that attract, absorb and annihilate point and line defects. These interfaces recover and control defects produced in materials subjected to extremes of displacement damage, impurity implantation, stress and temperature. Controlling radiation-induced-defects via interfaces is shown to be the key factor in reducing the damage and imparting stability in certain nanomaterials under conditions where bulk materials exhibit void swelling and/or embrittlement. We review the recovery of radiation-induced point defects at free surfaces and grain boundaries and stabilization of helium bubbles at interphase boundaries and present an approach for processing bulk nanocomposites containing interfaces that are stable under irradiation.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 50 条
  • [1] Damage-tolerant nanotwinned metals with nanovoids under radiation environments
    Y. Chen
    K Y. Yu
    Y. Liu
    S. Shao
    H. Wang
    M. A. Kirk
    J. Wang
    X. Zhang
    Nature Communications, 6
  • [2] Damage mechanisms in radiation-tolerant amorphous silicon solar cells
    Srour, J.R.
    Vendura Jr., G.J.
    Lo, D.H.
    Toporow, C.M.C.
    Dooley, M.
    Nakano, R.P.
    King, E.E.
    IEEE Transactions on Nuclear Science, 1998, 45 (6 pt 1): : 2624 - 2631
  • [3] Damage mechanisms in radiation-tolerant amorphous silicon solar cells
    Srour, JR
    Vendura, GJ
    Lo, DH
    Toporow, CMC
    Dooley, M
    Nakano, RP
    King, EE
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1998, 45 (06) : 2624 - 2631
  • [4] Damage-tolerant nanotwinned metals with nanovoids under radiation environments
    Chen, Y.
    Yu, K. Y.
    Liu, Y.
    Shao, S.
    Wang, H.
    Kirk, M. A.
    Wang, J.
    Zhang, X.
    NATURE COMMUNICATIONS, 2015, 6
  • [5] INOR 372-Carbon nanomaterials protect against radiation induced cellular damage
    Moore, Valerie C.
    Conyers, Jodie L.
    Lucente-Schultz, Rebecca
    Leonard, Ashley
    Tour, J. M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [6] Radiation degradation of nanomaterials
    Raffaelle, R. P.
    Cress, Cory D.
    Wilt, David M.
    Bailey, S. G.
    DEGRADATION PROCESSES IN NANOSTRUCTURED MATERIALS, 2006, 887 : 147 - +
  • [7] Nanomaterials for radiation shielding
    Sheila A. Thibeault
    Jin Ho Kang
    Godfrey Sauti
    Cheol Park
    Catharine C. Fay
    Glen C. King
    MRS Bulletin, 2015, 40 : 836 - 841
  • [8] Nanomaterials for radiation shielding
    Thibeault, Sheila A.
    Kang, Jin Ho
    Sauti, Godfrey
    Park, Cheol
    Fay, Catharine C.
    King, Glen C.
    MRS BULLETIN, 2015, 40 (10) : 836 - 841
  • [9] Radiation stability of nanomaterials
    Andrievskii R.A.
    Nanotechnologies in Russia, 2011, 6 (5-6): : 357 - 369
  • [10] Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces
    Shutthanandan, Vaithiyalingam
    Choudhury, Samrat
    Manandhar, Sandeep
    Kaspar, Tiffany C.
    Wang, Chongmin
    Devaraj, Arun
    Wirth, Brian D.
    Thevuthasan, Suntharampilli
    Hoagland, Richard G.
    Dholabhai, Pratik P.
    Uberuaga, Blas P.
    Kurtz, Richard J.
    ADVANCED MATERIALS INTERFACES, 2017, 4 (14):