DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

被引:1
|
作者
Hosseini, Seyyed Moosa [1 ]
Sadeghzadeh, R. A. [1 ]
Virdee, Bal Singh [2 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran, Iran
[2] London Metropolitan Univ, Ctr Commun Technol, London N7 8DB, England
关键词
Compressed sensing; Direction of arrival; Multiple measurement vector; Nonuniform linear array; SIGNAL RECONSTRUCTION; MATCHING PURSUIT;
D O I
10.1186/s13638-017-0838-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel algorithm is presented based on sparse multiple measurement vector (MMV) model for direction of arrival (DOA) estimation of far-field narrowband sources. The algorithm exploits singular value decomposition denoising to enhance the reconstruction process. The proposed multiple nature of MMV model enables the simultaneous processing of several data snapshots to obtain greater accuracy in the DOA estimation. The DOA problem is addressed in both uniform linear array (ULA) and nonuniform linear array (NLA) scenarios. Superior performance is demonstrated in terms of root mean square error and running time of the proposed method when compared with conventional compressed sensing methods such as simultaneous orthogonal matching pursuit (S-OMP), l(2),(1) minimization, and root-MUISC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios
    Seyyed Moosa Hosseini
    R. A. Sadeghzadeh
    Bal Singh Virdee
    EURASIP Journal on Wireless Communications and Networking, 2017
  • [2] Underdetermined DOA estimation using coprime array via multiple measurement sparse Bayesian learning
    Qin, Yanhua
    Liu, Yumin
    Yu, Zhongyuan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (07) : 1311 - 1318
  • [3] Underdetermined DOA estimation using coprime array via multiple measurement sparse Bayesian learning
    Yanhua Qin
    Yumin Liu
    Zhongyuan Yu
    Signal, Image and Video Processing, 2019, 13 : 1311 - 1318
  • [4] DoA Estimation Using Sparse Planar Vector Sensor Array in Shallow Ocean
    Aswathy, P.
    Kumar, N. Suresh
    Subhadrabhai, D.
    Sreekumar, G.
    2013 OCEAN ELECTRONICS (SYMPOL), 2013, : 9 - +
  • [5] DOA ESTIMATION USING A SPARSE LINEAR MODEL BASED ON EIGENVECTORS
    Wang Libin Cui Chen Li Pengfei(Department of Information Engineering
    Journal of Electronics(China), 2011, (Z1) : 496 - 502
  • [6] DOA ESTIMATION USING A SPARSE LINEAR MODEL BASED ON EIGENVECTORS
    Wang Libin Cui Chen Li PengfeiDepartment of Information EngineeringElectronic Engineering InstituteHefei China
    Journal of Electronics(China), 2011, 28(Z1) (China) : 496 - 502
  • [7] DOA Estimation Using Compressed Sparse Array
    Guo, Muran
    Zhang, Yimin D.
    Chen, Tao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (15) : 4133 - 4146
  • [8] Fast DOA Estimation Algorithms for Sparse Uniform Linear Array With Multiple Integer Frequencies
    Liu, Aihua
    Zhang, Xin
    Yang, Qiang
    Deng, Weibo
    IEEE ACCESS, 2018, 6 : 29952 - 29965
  • [9] Sparse Representation Based DOA Estimation Using a Modified Nested Linear Array
    Huang, Huiping
    Liao, Bin
    Guo, Chongtao
    Huang, Jianjun
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 919 - 922
  • [10] A multiple measurement vector approach for DOA estimation
    Hosseini S.M.
    Sadeghzadeh R.A.
    Recent Advances in Electrical and Electronic Engineering, 2017, 10 (03): : 216 - 222