Ionic channels: natural nanotubes described by the drift diffusion equations

被引:2
|
作者
Eisenberg, B [1 ]
机构
[1] Rush Med Coll, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA
关键词
tonic channels; natural nanotubes; drift diffusion equations;
D O I
10.1006/spmi.2000.0856
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Ionic channels are a large class of proteins with holes down their middle that control a wide range of cellular functions important in health and disease. Ionic channels can be analysed using a combination of the Poisson and drift diffusion equations familiar from computational electronics because their behavior is dominated by the electrical properties of their simple structure. (C) 2000 Academic Press.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 50 条
  • [1] Ionic channels in biological membranes: Natural nanotubes described by the drift-diffusion equations
    Eisenberg, Bob
    VLSI Design, 1998, 8 (1-4): : 75 - 78
  • [2] Ionic channels in biological membranes: Natural nanotubes
    Eisenberg, B
    ACCOUNTS OF CHEMICAL RESEARCH, 1998, 31 (03) : 117 - 123
  • [3] Ionic diffusion through protein channels: From molecular description to continuum equations
    Nadler, B
    Schuss, Z
    Singer, A
    Eisenberg, B
    NANOTECH 2003, VOL 3, 2003, : 439 - 442
  • [4] Drift-diffusion equations and applications
    Allegretto, W
    MATHEMATICAL PROBLEMS IN SEMINCONDUCTOR PHYSICS, 2003, 1823 : 57 - 95
  • [5] Ionic Channels as Natural Nanodevices
    Eisenberg B.
    Journal of Computational Electronics, 2002, 1 (03) : 331 - 333
  • [6] DRIFT MOBILITY AND DIFFUSION FOR IMPURITIES IN IONIC CRYSTALS
    MANNING, JR
    PHYSICAL REVIEW, 1965, 139 (6A): : 2027 - &
  • [7] On stability of a reaction diffusion system described by difference equations
    Almatroud, Othman Abdullah
    Bendib, Issam
    Hioual, Amel
    Ouannas, Adel
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (06) : 706 - 720
  • [8] Drift diffusion equations with fractional diffusion on compact Lie groups
    Cardona, Duvan
    Delgado, Julio
    Ruzhansky, Michael
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (04)
  • [9] Drift diffusion equations with fractional diffusion on compact Lie groups
    Duván Cardona
    Julio Delgado
    Michael Ruzhansky
    Journal of Evolution Equations, 2022, 22
  • [10] Iterative solution of the drift-diffusion equations
    Abdeljalil Nachaoui
    Numerical Algorithms, 1999, 21 : 323 - 341