Off-diagonal Bethe Ansatz on the so(5) spin chain

被引:9
|
作者
Li, Guang-Liang [1 ]
Cao, Junpeng [2 ,3 ,4 ]
Xue, Panpan [1 ]
Hao, Kun [5 ,6 ]
Sun, Pei [5 ,6 ]
Yang, Wen-Li [5 ,6 ,7 ]
Shi, Kangjie [5 ,6 ]
Wang, Yupeng [2 ,4 ,8 ]
机构
[1] Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[5] Northwest Univ, Inst Modern Phys, Xian 710127, Shaanxi, Peoples R China
[6] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710127, Shaanxi, Peoples R China
[7] Northwest Univ, Sch Phys, Xian 710127, Shaanxi, Peoples R China
[8] Yangtze River Delta Phys Res Ctr, Liyang, Jiangsu, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
N VERTEX MODEL; XXZ CHAIN; FUNCTIONAL RELATIONS; ALGEBRA; SEGMENT; SEPARATION; VARIABLES; 8-VERTEX; SPECTRUM; STATE;
D O I
10.1016/j.nuclphysb.2019.114719
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The so(5)(i.e., B-2) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in [1]) to determine the spectrum of the transfer matrices are derived. For the periodic case, we recover the results obtained in [1], while for the non-diagonal boundary case, a new inhomogeneous T - Q relation is constructed. The present method can be directly generalized to deal with the so(2n + 1) (i.e., B-n) quantum integrable spin chains with general boundaries. (C) 2019 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2013, 875 (01) : 152 - 165
  • [2] Off-Diagonal Bethe Ansatz and Exact Solution of a Topological Spin Ring
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [3] Nested off-diagonal Bethe ansatz and exact solutions of the su(n) spin chain with generic integrable boundaries
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [4] Nested off-diagonal Bethe ansatz and exact solutions of the su(n) spin chain with generic integrable boundaries
    Junpeng Cao
    Wen-Li Yang
    Kangjie Shi
    Yupeng Wang
    Journal of High Energy Physics, 2014
  • [5] Off-diagonal Bethe Ansatz solution of the τ2-model
    Xu, Xiaotian
    Cao, Junpeng
    Cui, Shuai
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [6] Off-diagonal Bethe Ansatz solution of the τ2-model
    Xiaotian Xu
    Junpeng Cao
    Shuai Cui
    Wen-Li Yang
    Kangjie Shi
    Yupeng Wang
    Journal of High Energy Physics, 2015
  • [7] Off-diagonal Bethe Ansatz for the D3(1) model
    Li, Guang-Liang
    Cao, Junpeng
    Xue, Panpan
    Hao, Kun
    Sun, Pei
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (12):
  • [8] Graded off-diagonal Bethe ansatz solution of the S U (2|2) spin chain model with generic integrable boundaries
    Xu, Xiaotian
    Cao, Junpeng
    Qiao, Yi
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2020, 960
  • [9] Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz
    Zhang, Xin
    Li, Yuan-Yuan
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [10] Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    NUCLEAR PHYSICS B, 2013, 877 (01) : 152 - 175