Theoretical insights into the thermal reduction of N2 to NH3 over a single metal atom incorporated nitrogen-doped graphene

被引:8
|
作者
Fang, Zhongpu [1 ]
Wang, Qi [1 ]
Li, Yanli [1 ]
Li, Yi [1 ,2 ]
Huang, Shuping [1 ]
Lin, Wei [1 ,2 ]
Chen, Wenkai [1 ,2 ]
Zhang, Yongfan [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China
[2] Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 154卷 / 05期
基金
中国国家自然科学基金;
关键词
Atoms - Catalyst activity - Reaction intermediates - Density functional theory - Ammonia - Doping (additives) - Metals - Spin polarization - Nitrogen - Ground state;
D O I
10.1063/5.0039338
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory calculations have been performed to study the reaction mechanism of N-2 thermal reduction (N2TR) over a single metal atom incorporated nitrogen-doped graphene. Our results reveal that the type of metal atoms and their coordination environments have a significant effect on the catalytic activity of N2TR. Regarding CoN4- and FeN4-embedded graphene sheets that the metal atom is fourfold coordinated, they are inactive for N2TR owing to the poor stability of the adsorbed H-2 and N-2 molecules. In contrast, if the monodisperse metal atom is surrounded by three N atoms, namely, CoN3/G and FeN3/G show activity toward N2TR, and catalytic conversion of N-2 into ammonia is achieved through the associative mechanism rather than the dissociative mechanism. Further investigations show that the synthesis of NH3 over the two surfaces is mainly through the formation of an NHNH* intermediate; however, the detailed reaction mechanisms are sensitive to the type of metal atom introduced into N-doped graphene. Based on the calculated kinetic barriers, FeN3/G exhibits a better catalytic activity for N2TR. The superior performance of FeN3/G can be attributed to the fact that this surface prefers a high spin-polarized state during the whole process of N2TR, while the non-spin polarized state is predicted as the ground state for most of the elementary steps of N-2-fixation over CoN3/G. The present study provides theoretical insights into developing graphene-based single atom catalysts with a high activity toward ammonia synthesis through N2TR.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene
    Poldorn, Preeyaporn
    Wongnongwa, Yutthana
    Mudchimo, Tanabat
    Jungsuttiwong, Siriporn
    JOURNAL OF CO2 UTILIZATION, 2021, 48
  • [2] Theoretical insights into hydrogenation of CO2 to formic acid over a single Co atom incorporated nitrogen-doped graphene: A DFT study
    Esrafili, Mehdi D.
    Nejadebrahimi, Bahram
    APPLIED SURFACE SCIENCE, 2019, 475 : 363 - 371
  • [3] Single-atom catalysts for electrochemical N2 reduction to NH3
    Muhammad Saqlain Iqbal
    Zhi-Bo Yao
    Yu-Kun Ruan
    Ramsha Iftikhar
    Lei-Duan Hao
    Alex W. Robertson
    Syed Muhammad Imran
    Zhen-Yu Sun
    Rare Metals, 2023, 42 : 1075 - 1097
  • [4] Single-atom catalysts for electrochemical N2 reduction to NH3
    Muhammad Saqlain lqbal
    Zhi-Bo Yao
    Yu-Kun Ruan
    Ramsha Iftikhar
    Lei-Duan Hao
    Alex W.Robertson
    Syed Muhammad Imran
    Zhen-Yu Sun
    Rare Metals, 2023, 42 (04) : 1075 - 1097
  • [5] Single-atom catalysts for electrochemical N2 reduction to NH3
    Iqbal, Muhammad Saqlain
    Yao, Zhi-Bo
    Ruan, Yu-Kun
    Iftikhar, Ramsha
    Hao, Lei-Duan
    Robertson, Alex W.
    Imran, Syed Muhammad
    Sun, Zhen-Yu
    RARE METALS, 2023, 42 (04) : 1075 - 1097
  • [6] Theoretical studies of nitrogen-doped graphene loaded transition metal single-atom catalysts for electrochemical CO reduction
    Gao, Yongze
    Talib, Shamraiz Hussain
    Yu, Qi
    NANO RESEARCH, 2025, 18 (01)
  • [7] Electrochemical Reduction of N2 to NH3 Using a Co-Atom Stabilized on Defective N-Doped Graphene: A Computational Study
    Saeidi, Nasibeh
    Esrafili, Mehdi D.
    Sardroodi, Jaber Jahanbin
    CHEMISTRYSELECT, 2019, 4 (42): : 12216 - 12226
  • [8] Molybdenum bound nitrogen-doped graphene catalyst for reduction of N2 to NH3 and NH2NH2, using FLP as a co-catalyst: A DFT study N2 reduction by FLP- H2 catalysed by Mo
    Sivan, Akhil K.
    Thomas, Jisha Mary
    Jeyakumar, Thayalaraj Christopher
    Sivasankar, Chinnappan
    APPLIED ORGANOMETALLIC CHEMISTRY, 2022, 36 (05)
  • [9] N2O + CO reaction over a single Si or P atom incorporated nitrogen-doped graphene: A comparative DFT study
    Esrafili, Mehdi D.
    CHEMICAL PHYSICS LETTERS, 2018, 708 : 94 - 99
  • [10] Ambient electrocatalytic N2 reduction to NH3 by metal fluorides
    Li, Peipei
    Liu, Zaichun
    Wu, Tongwei
    Zhang, Ya
    Wang, Linyu
    Wang, Li
    Ji, Lei
    Zhang, Youyu
    Luo, Yonglan
    Wang, Ting
    Liu, Shanhu
    Wu, Yuping
    Liu, Meiling
    Sun, Xuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (30) : 17761 - 17765