EXPLORING THE POTENTIAL OF HIGH-RESOLUTION PLANETSCOPE IMAGERY FOR PASTURE BIOMASS ESTIMATION IN AN INTEGRATED CROP-LIVESTOCK SYSTEM

被引:0
|
作者
Dos Reis, A. A. [1 ,2 ]
Silva, B. C. [1 ]
Werner, J. P. S. [1 ]
Silva, Y. F. [1 ]
Rocha, J., V [1 ]
Figueiredo, G. K. D. A. [1 ]
Antunes, J. F. G. [3 ]
Esquerdo, J. C. D. M. [3 ]
Coutinho, A. C. [3 ]
Lamparelli, R. A. C. [2 ]
Magalhaes, P. S. G. [2 ]
机构
[1] Univ Estadual Campinas, Sch Agr Engn FEAGRI, UNICAMP, BR-13083875 Campinas, Brazil
[2] Univ Estadual Campinas, Interdisciplinary Ctr Energy Planning NIPE, UNICAMP, BR-13083896 Campinas, SP, Brazil
[3] Brazilian Agr Res Corp Embrapa, Embrapa Agr Informat, BR-13083886 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Pastureland; Vegetation Indices; Dove satellites; Nano-Satellites; Machine Learning; Random Forest; LEAF-AREA INDEX; VEGETATION INDEX; ABOVEGROUND BIOMASS; SOIL; LANDSAT; SENTINEL-2A; HEIGHT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pasture biomass information is essential to monitor forage resources in grazed areas, as well as to support grazing management decisions. The increasing temporal and spatial resolutions offered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely -sensed data. In a preliminary study, we investigated the potential of spectral variables derived from PlanetScope imagery to predict pasture biomass in an area of Integrated Crop -Livestock System (ICLS) in Brazil. Satellite and field data were collected during the same period (May August 2019) for calibration and validation of the relation between predictor variables and pasture biomass using the Random Forest (RF) regression algorithm. We used as predictor variables 24 vegetation indices derived from PlanetScope imagery, as well as the four PlanetScope bands, and field management information. Pasture biomass ranged from approximately 24 to 656 g.m-2, with a coefficient of variation of 54.96%. Near Infrared Green Simple Ratio (N1R/Green), Green Leaf Algorithm (GLA) vegetation indices and days after sowing (DAS) are among the most important variables as measured by the RF Variable Importance metric in the best RF model predicting pasture biomass, which resulted in Root Mean Square Error (RMSE) of 52.04 g.m-2 (32.75%). Accurate estimates of pasture biomass using spectral variables derived from PlanetScope imagery are promising, providing new insights into the opportunities and limitations related to the use of PlanetScope imagery for pasture monitoring.
引用
收藏
页码:675 / 680
页数:6
相关论文
共 46 条
  • [1] Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery
    Dos Reis, Aliny A.
    Werner, Joao P. S.
    Silva, Bruna C.
    Figueiredo, Gleyce K. D. A.
    Antunes, Joao F. G.
    Esquerdo, Julio C. D. M.
    Coutinho, Alexandre C.
    Lamparelli, Rubens A. C.
    Rocha, Jansle, V
    Magalhaes, Paulo S. G.
    [J]. REMOTE SENSING, 2020, 12 (16)
  • [2] Soil and crop attributes affected by winter pasture management in integrated crop-livestock system
    da Veiga, Milton
    Durigon, Leandro
    Pandolfo, Carla Maria
    Balbinot Junior, Alvadi Antonio
    [J]. CIENCIA RURAL, 2012, 42 (03): : 444 - 450
  • [3] Nitrogen variability assessment of pasture fields under an integrated crop-livestock system using UAV, PlanetScope, and Sentinel-2 data
    Pereira, F. R. da S.
    de Lima, J. P.
    Freitas, R. G.
    Dos Reis, A. A.
    do Amaral, L. R.
    Figueiredo, G. K. D. A.
    Lamparelli, R. A. C.
    Magalhaes, P. S. G.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [4] Weed Biomass and Species Composition as Affected by an Integrated Crop-Livestock System
    Tracy, Benjamin F.
    Davis, Adam S.
    [J]. CROP SCIENCE, 2009, 49 (04) : 1523 - 1530
  • [5] System fertilization in the pasture phase enhances productivity in integrated crop-livestock systems
    Freitas, C. M.
    Yasuoka, J. I.
    Pires, G. C.
    Gama, J. P.
    Oliveira, L. G. S.
    Davi, J. E. A.
    Silva, L. S.
    Silva, I. A. G.
    Bremm, C.
    Carvalho, P. C. F.
    Moraes, A.
    Souza, E. D.
    [J]. JOURNAL OF AGRICULTURAL SCIENCE, 2023, 161 (06): : 755 - 762
  • [6] Carryover of N-fertilization from corn to pasture in an integrated crop-livestock system
    Bernardon, Angela
    Assmann, Tangriani Simioni
    Soares, Andre Brugnara
    Franzluebbers, Alan
    Maccari, Marcieli
    de Bortolli, Marcos Antonio
    [J]. ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2021, 67 (05) : 687 - 702
  • [7] Intense Pasture Management in Brazil in an Integrated Crop-Livestock System Simulated by the DayCent Model
    Silva, Yane Freitas
    Valadares, Rafael Vasconcelos
    Dias, Henrique Boriolo
    Cuadra, Santiago Vianna
    Campbell, Eleanor E.
    Lamparelli, Rubens A. C.
    Moro, Edemar
    Battisti, Rafael
    Alves, Marcelo R.
    Magalhaes, Paulo S. G.
    Figueiredo, Gleyce K. D. A.
    [J]. SUSTAINABILITY, 2022, 14 (06)
  • [8] Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system
    de Albuquerque Nunes, Pedro Arthur
    Bredemeier, Christian
    Bremm, Carolina
    Martins Caetano, Luis Augusto
    de Almeida, Gleice Menezes
    de Souza Filho, William
    Anghinoni, Ibanor
    de Faccio Carvalho, Paulo Cesar
    [J]. GRASSLAND SCIENCE, 2019, 65 (01) : 49 - 59
  • [9] Factors influencing potential scale of adoption of a perennial pasture in a mixed crop-livestock farming system
    Byrne, F.
    Robertson, M. J.
    Bathgate, A.
    Hoque, Z.
    [J]. AGRICULTURAL SYSTEMS, 2010, 103 (07) : 453 - 462
  • [10] Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images
    Freitas, Rodrigo G.
    Pereira, Francisco R. S.
    Dos Reis, Aliny A.
    Magalha, Paulo S. G.
    Figueiredo, Gleyce K. D. A.
    do Amaral, Lucas R.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198