Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems

被引:0
|
作者
Shinn, Tong-Wook [1 ]
Takaoka, Tadao [1 ]
机构
[1] Univ Canterbury, Dept Comp Sci & Software Engn, Christchurch 1, New Zealand
来源
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a new problem that combines the well known All Pairs Shortest Paths (APSP) problem and the All Pairs Bottleneck Paths (APBP) problem to compute the shortest paths for all pairs of vertices for all possible flow amounts. We call this new problem the All Pairs Shortest Paths for All Flows (APSP-AF) problem. We firstly solve the APSP- AF problem on directed graphs with unit edge costs and real edge capacities in (O) over tilde(root tn((omega+9)/4)) = (O) over tilde(root tn(2.843)) time, where n is the number of vertices, t is the number of distinct edge capacities (flow amounts) and O(n(omega)) < O(n(2.373)) is the time taken to multiply two n- by- n matrices over a ring. Secondly we extend the problem to graphs with positive integer edge costs and present an algorithm with <(O)over tilde>(root tn((omega+5)/4)n((omega+9)/4)) = (O) over tilde(root tn(1.843)n(2.843)) worst case time complexity, where c is the upper bound on edge costs.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [1] All pairs almost shortest paths
    Dor, D
    Halperin, S
    Zwick, U
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 452 - 461
  • [2] All pairs lightest shortest paths
    Zwick, Uri
    [J]. Conference Proceedings of the Annual ACM Symposium on Theory of Computing, 1999, : 61 - 69
  • [3] Faster Approximate All Pairs Shortest Paths
    Saha, Barna
    Ye, Christopher
    [J]. PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4758 - 4827
  • [4] Improved algorithm for all pairs shortest paths
    Han, YJ
    [J]. INFORMATION PROCESSING LETTERS, 2004, 91 (05) : 245 - 250
  • [5] All-pairs almost shortest paths
    Dor, D
    Halperin, S
    Zwick, U
    [J]. SIAM JOURNAL ON COMPUTING, 2000, 29 (05) : 1740 - 1759
  • [6] Algorithms for maintaining all-pairs shortest paths
    Misra, S
    Oommen, BJ
    [J]. 10TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2005, : 116 - 121
  • [7] New Algorithms for All Pairs Approximate Shortest Paths
    Roditty, Liam
    [J]. PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 309 - 320
  • [8] AN ALGEBRAIC DECOMPOSED ALGORITHM FOR ALL PAIRS SHORTEST PATHS
    Wang, I-Lin
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (03): : 561 - 576
  • [9] Minimizing communication in all-pairs shortest paths
    Solomonik, Edgar
    Buluc, Aydin
    Demmel, James
    [J]. IEEE 27TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2013), 2013, : 548 - 559
  • [10] Fuzzy all-pairs shortest paths problem
    Seda, Milos
    [J]. COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 395 - 404