Localization of two interacting particles in a one-dimensional random potential

被引:29
|
作者
Song, PH [1 ]
Kim, D [1 ]
机构
[1] SEOUL NATL UNIV,CTR THEORET PHYS,SEOUL 151742,SOUTH KOREA
来源
PHYSICAL REVIEW B | 1997年 / 56卷 / 19期
关键词
D O I
10.1103/PhysRevB.56.12217
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the localization of two interacting particles in a one-dimensional random potential. Our definition of the two-particle localization length, xi, is the same as that of von Oppen et al. [Phys. Rev. Lett. 76, 491 (1996)]. xi's for chains of finite lengths are calculated numerically using the recursive Green's function method for several values of the strength of the disorder, W, and the strength of interaction, U. When U = 0, xi approaches a value larger than half the single-particle localization length as the system size tends to infinity and behaves as xi similar to W-upsilon 0 for small W with upsilon(0) = 2.1 +/- 0.1. When U not equal 0, we use the finite size scaling ansatz and find the relation xi similar to W-upsilon with upsilon = 2.9 +/- 0.2. Moreover, data show the scaling behavior xi similar to W-upsilon 0(b\U\/W-Delta) with Delta = 4.0 +/- 0.5.
引用
收藏
页码:12217 / 12220
页数:4
相关论文
共 50 条
  • [1] Delocalization of two interacting particles in a random potential: One-dimensional electric interaction
    Flores, JC
    [J]. PHYSICAL REVIEW B, 2000, 62 (01): : 33 - 36
  • [2] Breit-Wigner width for two interacting particles in a one-dimensional random potential
    Jacquod, P
    Shepelyansky, DL
    Sushkov, OP
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (05) : 923 - 926
  • [3] LOCALIZATION OF 2 COUPLED PARTICLES IN A ONE-DIMENSIONAL RANDOM POTENTIAL
    DOROKHOV, ON
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 98 (02): : 646 - 654
  • [4] LOCALIZATION IN ONE-DIMENSIONAL RANDOM POTENTIAL
    BREZINI, A
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1985, 128 (01): : K81 - K85
  • [5] Interaction-dependent enhancement of the localisation length for two interacting particles in a one-dimensional random potential
    Leadbeater, M
    Römer, RA
    Schreiber, M
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 8 (04): : 643 - 652
  • [6] Interaction-dependent enhancement of the localisation length for two interacting particles in a one-dimensional random potential
    M. Leadbeater
    R.A. Römer
    M. Schreiber
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 8 : 643 - 652
  • [7] Scaling the localisation lengths for two interacting particles in one-dimensional random potentials
    Römer, RA
    Leadbeater, M
    Schreiber, M
    [J]. PHYSICA A, 1999, 266 (1-4): : 481 - 485
  • [8] Localization properties of two interacting electrons in a disordered quasi one-dimensional potential
    Richert, J
    Weidenmüller, HA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3281 - 3288
  • [9] Quantum Fisher information and the localization properties of two interacting particles in one-dimensional systems
    Liu, X. M.
    Gao, G. J.
    Zhang, Y. M.
    Liu, J-M
    [J]. SOLID STATE COMMUNICATIONS, 2018, 279 : 12 - 16
  • [10] Tunneling dynamics of two interacting one-dimensional particles
    Gharashi, Seyed Ebrahim
    Blume, D.
    [J]. PHYSICAL REVIEW A, 2015, 92 (03):