A Markov chain model for N-linked protein glycosylation - towards a low-parameter tool for model-driven glycoengineering

被引:70
|
作者
Spahn, Philipp N. [1 ,3 ]
Hansen, Anders H. [4 ]
Hansen, Henning G. [4 ]
Arnsdorf, Johnny [4 ]
Kildegaard, Helene F. [4 ]
Lewis, Nathan E. [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pediat, Sch Med, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Novo Nordisk Fdn, Ctr Biosustainabil, La Jolla, CA 92093 USA
[4] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Horsholm, Denmark
关键词
Glycosylation; Glycoengineering; Markov chains; Flux-balance analysis; CONSTRAINT-BASED MODELS; MATHEMATICAL-MODEL; QUANTITATIVE PREDICTION; SYSTEMS GLYCOBIOLOGY; CELLULAR-METABOLISM; GLYCAN STRUCTURES; KIN RECOGNITION; GOLGI ENZYMES; CHO-CELLS; GLYCOSYLTRANSFERASES;
D O I
10.1016/j.ymben.2015.10.007
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks underlying glycosylation and the vast number of different glycans that can be synthesized in a host cell. Computational modeling offers an intriguing option to rationally guide glycoengineering, but the high parametric demands of current modeling approaches pose challenges to their application. Here we present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require userprovided kinetic information. We use this method to predict and experimentally validate glycoprofiles on EPO, IgG as well as the endogenous secretome following glycosyltransferase knock-out in different Chinese hamster ovary (CHO) cell lines. Our approach offers a flexible and user-friendly platform that can serve as a basis for powerful computational engineering efforts in mammalian cell factories for biopharmaceutical production. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 66
页数:15
相关论文
共 24 条
  • [1] Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells
    Stach, Christopher S.
    McCann, Meghan G.
    O'Brien, Conor M.
    Le, Tung S.
    Somia, Nikunj
    Chen, Xinning
    Lee, Kyoungho
    Fu, Hsu-Yuan
    Daoutidis, Prodromos
    Zhao, Liang
    Hu, Wei-Shou
    Smanski, Michael
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (11): : 2524 - 2535
  • [2] Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation
    Baker, Jenny L.
    Celik, Eda
    DeLisa, Matthew P.
    [J]. TRENDS IN BIOTECHNOLOGY, 2013, 31 (05) : 49 - 59
  • [3] A novel low-parameter computational model to aid in-silico glycoengineering
    Philipp N Spahn
    Anders H Hansen
    Henning G Hansen
    Johnny Arnsdorf
    Helene F Kildegaard
    Nathan E Lewis
    [J]. BMC Proceedings, 9 (Suppl 9)
  • [4] Predictive glycoengineering of biosimilars using a Markov chain glycosylation model
    Spahn, Philipp N.
    Hansen, Anders H.
    Kol, Stefan
    Voldborg, Bjorn G.
    Lewis, Nathan E.
    [J]. BIOTECHNOLOGY JOURNAL, 2017, 12 (02)
  • [5] A mathematical model of N-linked glycosylation
    Krambeck, FJ
    Betenbaugh, MJ
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2005, 92 (06) : 711 - 728
  • [6] Low-Parameter Phylogenetic Inference Under the General Markov Model
    Holland, Barbara R.
    Jarvis, Peter D.
    Sumner, Jeremy G.
    [J]. SYSTEMATIC BIOLOGY, 2013, 62 (01) : 78 - 92
  • [7] A computational model to study genetic and metabolic effects on N-linked protein glycosylation
    Spahn, P. N.
    Hansen, A. H.
    Hansen, H. G.
    Arnsdorf, J.
    Kildegaard, H. F.
    Lewis, N. E.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2015, 26
  • [8] Towards A Model-Driven Design Tool for Big Data Architectures
    Guerriero, Michele
    Tajfar, Saeed
    Tamburri, Damian A.
    Di Nitto, Elisabetta
    [J]. 2016 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING (BIGDSE 2016), 2016, : 37 - 43
  • [9] An analytical study on the identification of N-linked glycosylation sites using machine learning model
    Akmal, Muhammad Aizaz
    Hassan, Muhammad Awais
    Shoaib, Muhammad
    Khurshid, Khaldoon S.
    Mohamed, Abdullah
    [J]. PEERJ COMPUTER SCIENCE, 2022, 8
  • [10] THE RELATIONSHIP OF N-LINKED GLYCOSYLATION AND HEAVY-CHAIN BINDING-PROTEIN ASSOCIATION WITH THE SECRETION OF GLYCOPROTEINS
    DORNER, AJ
    BOLE, DG
    KAUFMAN, RJ
    [J]. JOURNAL OF CELL BIOLOGY, 1987, 105 (06): : 2665 - 2674