Intrusion detection using Emergent Self-Organizing Maps

被引:0
|
作者
Mitrokotsa, Aikaterini [1 ]
Douligeris, Christos [1 ]
机构
[1] Univ Piraeus, Dept Informat Cs, Piraeus 18534, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we analyze the potential of using Emergent Self-Organizing Maps (ESOMs) based on Kohonen Self -Organizing maps in order to detect intrusive behaviours. The)proposed approach combines machine learning and information visualization techniques to analyze network traffic and is based on classifying "normal" versus "abnormal" traffic. The results are promising as they show the. ability of eSOMs to classify normal against abnormal behaviour regarding false alarms and detection probabilities.
引用
收藏
页码:559 / 562
页数:4
相关论文
共 50 条
  • [1] Intrusion Detection System using Self-Organizing Maps
    Alsulaiman, Mansour M.
    Alyahya, Aasem N.
    Alkharboush, Raed A.
    Alghafis, Nasser S.
    [J]. NSS: 2009 3RD INTERNATIONAL CONFERENCE ON NETWORK AND SYSTEM SECURITY, 2009, : 397 - +
  • [2] DDoS intrusion detection using Generalized Grey Self-Organizing Maps
    Li, Ding
    Ni Gui-qiang
    Pan Zhi-Song
    Hu Gu-Yu
    [J]. PROCEEDINGS OF 2007 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES, VOLS 1 AND 2, 2007, : 1548 - 1551
  • [3] Visualizing Syscalls using Self-organizing Maps for System Intrusion Detection
    Landauer, Max
    Skopik, Florian
    Wurzenberger, Markus
    Hotwagner, Wolfgang
    Rauber, Andreas
    [J]. ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 349 - 360
  • [4] Using Self-Organizing Maps with Learning Classifier System for Intrusion Detection
    Tamee, Kreangsak
    Rojanavasu, Pornthep
    Udomthanapong, Sonchai
    Pinngern, Ouen
    [J]. PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 1071 - +
  • [5] Attack characterization and intrusion detection using an ensemble of self-organizing maps
    DeLooze, Lori L.
    [J]. 2006 IEEE Information Assurance Workshop, 2006, : 108 - 115
  • [6] Host-based intrusion detection using self-organizing maps
    Lichodzijewski, P
    Zincir-Heywood, AN
    Heywood, MI
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1714 - 1719
  • [7] Attack characterization and intrusion detection using an ensemble of Self-Organizing Maps
    DeLooze, Lori L.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2121 - 2128
  • [8] Improving the Performance of Self-Organizing Maps for Intrusion Detection
    McElwee, Steven
    Cannady, James
    [J]. SOUTHEASTCON 2016, 2016,
  • [9] A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection
    Xiaofei Qu
    Lin Yang
    Kai Guo
    Linru Ma
    Meng Sun
    Mingxing Ke
    Mu Li
    [J]. Mobile Networks and Applications, 2021, 26 : 808 - 829
  • [10] A Survey on the Development of Self-Organizing Maps for Unsupervised Intrusion Detection
    Qu, Xiaofei
    Yang, Lin
    Guo, Kai
    Ma, Linru
    Sun, Meng
    Ke, Mingxing
    Li, Mu
    [J]. Mobile Networks and Applications, 2021, 26 (02) : 808 - 829