Numerical solution of eigenvalue problems by means of a wavelet-based Lanczos decomposition

被引:0
|
作者
Fischer, P [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
关键词
wavelets; eigenvalue problem; Lanczos process;
D O I
10.1002/(SICI)1097-461X(2000)77:2<552::AID-QUA7>3.3.CO;2-E
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The simple Lanczos process is very efficient for finding a few extreme eigenvalues of a large symmetric matrix. The main task in each iteration step consists in evaluating a matrix-vector product. It is shown how to apply a fast wavelet-based product in order to speed up computations. Some numerical results are given for three different monodimensional cases: the harmonic oscillator case, Me hydrogenlike atoms, and a problem with a pseudo-double-well potential. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:552 / 562
页数:11
相关论文
共 50 条