Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy

被引:8
|
作者
Wahab, MA [1 ]
Park, JH
Alam, MS
Pang, SS
机构
[1] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA
[2] Samsung Elect Co Ltd, Yongin 449711, Gyeongg Do, South Korea
基金
美国国家航空航天局;
关键词
corrosion prevention compounds (CPC); corrosion fatigue; fatigue life; scanning electron microscope (SEM); crack surface; crack growth;
D O I
10.1016/j.jmatprotec.2006.01.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Corrosion-prevention-compound (CPC) is commonly used to prevent corrosion in the aircraft industry. The presence of corrosive environment (salt-fog, water-fog, or even dry air) on aircraft structures has detrimental effects on the fatigue of aircraft components, which may initiate and also accelerate the crack growth rate in the structures. This study describes the crack-growth results of an experimental program on 2024-T3 aluminum alloy using center-crack specimen and also investigate the effect of CPC on fatigue life. The corrosion fatigue in the presence of water vapor reduces the total fatigue life. The fatigue life of structures with the CPC treatment is shown to increase the fatigue life due to the protection from the corrosive environment (water vapor). Test results are obtained for differing stress ratios and frequencies, with and without the CPC treatment, in humid testing-environment conducted at constant amplitude fatigue loading. Micrographs of the failed-specimen surfaces are examined by scanning electron microscope (SEM) to investigate the mechanisms of failure processes and to identify the formation of crack surface along the crack-front in the crack growth region. Interestingly, two distinct failure modes are found and these are ductile and brittle fracture modes. The transition from the ductile to brittle mode can be observed clearly in this work. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [1] Corrosion prevention compounds on the fatigue life of 2024-T3 aluminum alloy
    Wahab, M. A.
    Park, J. H.
    Pang, S. S.
    [J]. Proceedings of the ASME Materials Division, 2005, 100 : 475 - 483
  • [2] Prior corrosion and fatigue of 2024-T3 aluminum alloy
    Jones, Kimberli
    Hoeppner, David W.
    [J]. CORROSION SCIENCE, 2006, 48 (10) : 3109 - 3122
  • [3] THE EFFECT OF ANODIZING ON THE CORROSION FATIGUE BEHAVIOR OF 2024-T3 ALUMINUM-ALLOY
    TU, GC
    CHEN, IT
    HWANG, RY
    [J]. JSME INTERNATIONAL JOURNAL SERIES I-SOLID MECHANICS STRENGTH OF MATERIALS, 1990, 33 (04): : 527 - 534
  • [4] Corrosion-fatigue behavior of welded aluminum alloy 2024-T3
    Yadav, V. K.
    Gaur, V.
    Singh, I. V.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 173
  • [5] Reliability analysis of corrosion fatigue crack growth for 2024-T3 aluminum alloy
    Ge, S.
    Li, Z.
    Zhang, J. G.
    Xiao, Y. C.
    Liu, G. Q.
    Bao, B. S.
    [J]. MATERIALS AND PRODUCT TECHNOLOGIES, 2008, 44-46 : 105 - 110
  • [6] Fatigue striations and fissures in 2024-T3 aluminum alloy
    McEvily, A. J.
    Endo, M.
    Cho, S.
    Kasivitamnuay, J.
    Matsunaga, H.
    [J]. MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE V, 2008, 567-568 : 397 - +
  • [7] CORROSION-FATIGUE OF A 2024-T3 ALUMINUM-ALLOY IN THE SHORT CRACK DOMAIN
    WAN, KC
    CHEN, GS
    GAO, M
    WEI, RP
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 1994, 69 (03) : R63 - R67
  • [8] A STUDY OF CORROSION FATIGUE BEHAVIOR OF ANODIZED AND UNANODIZED 2024-T3 ALUMINUM-ALLOY
    TU, GC
    HWANG, RY
    CHEN, IT
    [J]. JOURNAL OF MATERIALS SCIENCE, 1991, 26 (05) : 1375 - 1382
  • [9] Effect of Surface Treatment on Bio-corrosion in Aluminum Alloy 2024-T3
    K. Nishchitha
    M. K. Deepa
    B. G. Prakashaiah
    J. N. Balaraju
    B. E. Amitha rani
    [J]. Journal of Materials Engineering and Performance, 2018, 27 : 5778 - 5787
  • [10] Effect of Surface Treatment on Bio-corrosion in Aluminum Alloy 2024-T3
    Nishchitha, K.
    Deepa, M. K.
    Prakashaiah, B. G.
    Balaraju, J. N.
    Rani, B. E. Amitha
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (11) : 5778 - 5787