Machine Learning for Aerodynamic Uncertainty Quantification

被引:0
|
作者
Liu, Dishi [1 ]
Maruyama, Daigo [1 ]
Goert, Stefan [1 ]
机构
[1] German Aerosp Ctr, Cologne, Germany
来源
ERCIM NEWS | 2020年 / 122期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Within the framework of the project "Uncertainty Management for Robust Industrial Design in Aeronautics" (UMRIDA), funded by the European Union, several machine learning-based predictive models were compared in terms of their efficiency in estimating statistics of aerodynamic performance of aerofoils. The results show that the models based on both samples and gradients achieve better accuracy than those based solely on samples at the same computational costs.
引用
收藏
页码:20 / 21
页数:2
相关论文
共 50 条
  • [1] Machine Learning for the Uncertainty Quantification of Power Networks
    Memon, Zain A.
    Trinchero, Riccardo
    Manfredi, Paolo
    Canavero, Flavio
    Stievano, Igor S.
    Xie, Yanzhao
    [J]. IEEE LETTERS ON ELECTROMAGNETIC COMPATIBILITY PRACTICE AND APPLICATIONS, 2020, 2 (04): : 138 - 141
  • [2] Uncertain Context: Uncertainty Quantification in Machine Learning
    Jalaian, Brian
    Lee, Michael
    Russell, Stephen
    [J]. AI MAGAZINE, 2019, 40 (04) : 40 - 48
  • [3] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman, Hussein
    Shirmohammadi, Shervin
    [J]. IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2021, 24 (03) : 23 - 27
  • [4] Evaluation of machine learning techniques for forecast uncertainty quantification
    Sacco, Maximiliano A.
    Ruiz, Juan J.
    Pulido, Manuel
    Tandeo, Pierre
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (749) : 3470 - 3490
  • [5] Uncertainty quantification of machine learning models: on conformal prediction
    Akpabio, Inimfon I.
    Savari, Serap A.
    [J]. JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2021, 20 (04):
  • [6] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman, Hussein
    Shirmohammadi, Shervin
    [J]. IEEE Instrumentation and Measurement Magazine, 2021, 24 (03): : 23 - 27
  • [7] Machine learning the deuteron: new architectures and uncertainty quantification
    Sarmiento, J. Rozalen
    Keeble, J. W. T.
    Rios, A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [8] Aerodynamic Uncertainty Quantification for Tiltrotor Aircraft
    Yuan, Ye
    Thomson, Douglas
    Anderson, David
    [J]. AEROSPACE, 2022, 9 (05)
  • [9] Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods
    Li, Jinxing
    Liu, Tianyuan
    Zhu, Guangya
    Li, Yunzhu
    Xie, Yonghui
    [J]. ENERGY, 2023, 273
  • [10] A Survey of Uncertainty Quantification in Machine Learning for Space Weather Prediction
    Siddique, Talha
    Mahmud, Md Shaad
    Keesee, Amy M.
    Ngwira, Chigomezyo M.
    Connor, Hyunju
    [J]. GEOSCIENCES, 2022, 12 (01)