The diffusion mechanism of water in conductive metal-organic frameworks

被引:4
|
作者
Cao, Zhonglin [1 ]
Farimani, Amir Barati [1 ,2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
关键词
MOLECULAR-DYNAMICS; CARBON NANOTUBES; ADSORPTION; HYDROGEN; HEXAAMINOBENZENE; SIMULATIONS; SYSTEM; MOF;
D O I
10.1039/d2cp01840c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water is one of the most important guest molecules in metal-organic frameworks (MOFs) since it often serves as a solvent for ions and other molecules. Studying the diffusion mechanism of water molecules in conductive MOFs (c-MOFs) is fundamental to harnessing the potential of c-MOFs in designing next generation energy storage devices. In this work, using molecular dynamics simulations, we show that water follows the Fickian-type of diffusion mechanism in different types of c-MOFs. We investigate the effect of the stacking and metal center type on the water diffusion coefficient in c-MOFs. Water in c-MOFs with eclipsed stacking is shown to have 21.5% higher diffusion coefficient than in c-MOFs with slipped-parallel stacking, and 4-8% higher diffusion coefficient than in bulk water. The physical reasons behind the reduced water diffusion coefficient in slipped-parallel stacking c-MOFs are the higher number of hydrogen bonds near the inner surface and the zig-zag geometry. This work provides a molecular insight into the water dynamics and water structure inside multiple types of c-MOFs.
引用
收藏
页码:24852 / 24859
页数:8
相关论文
共 50 条
  • [1] Hydrogen storage mechanism and diffusion in metal-organic frameworks
    Koizumi, Kenichi
    Nobusada, Katsuyuki
    Boero, Mauro
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (15) : 7756 - 7764
  • [2] Methane diffusion mechanism in catenated metal-organic frameworks
    Xue, Chunyu
    Zhou, Zie
    Liu, Bei
    Yang, Qingyuan
    Zhong, Chongli
    [J]. MOLECULAR SIMULATION, 2009, 35 (05) : 373 - 380
  • [3] Conductive Metal-Organic Frameworks for Supercapacitors
    Niu, Liang
    Wu, Taizheng
    Chen, Ming
    Yang, Long
    Yang, Jingjing
    Wang, Zhenxiang
    Kornyshev, Alexei A.
    Jiang, Huili
    Bi, Sheng
    Feng, Guang
    [J]. ADVANCED MATERIALS, 2022, 34 (52)
  • [4] Electrically Conductive Metal-Organic Frameworks
    Xie, Lilia S.
    Skorupskii, Grigorii
    Dinca, Mircea
    [J]. CHEMICAL REVIEWS, 2020, 120 (16) : 8536 - 8580
  • [5] Luminescent conductive metal-organic frameworks
    Skorupskii, Grigorii
    Williams, Kristopher
    Day, Robert
    Perkinson, Cole
    Cotlet, Mircea
    Baldo, Marc
    Tisdale, William
    Dinca, Mircea
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [6] Luminescent conductive metal-organic frameworks
    Skorupskii, Grigorii
    Dinca, Mircea
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [7] Electrically Conductive Porous Metal-Organic Frameworks
    Sun, Lei
    Campbell, Michael G.
    Dinca, Mircea
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) : 3566 - 3579
  • [8] Ion-conductive metal-organic frameworks
    Sadakiyo, Masaaki
    Kitagawa, Hiroshi
    [J]. DALTON TRANSACTIONS, 2021, 50 (16) : 5385 - 5397
  • [9] Proton-Conductive Metal-Organic Frameworks
    Yamada, Teppei
    Sadakiyo, Masaaki
    Shigematsu, Akihito
    Kitagawa, Hiroshi
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2016, 89 (01) : 1 - 10
  • [10] THz Studies of Conductive Metal-Organic Frameworks
    Pattengale, Brian
    Okabe, Ryotaro
    Ostresh, Sarah
    Schmuttenmaer, Charles A.
    [J]. 2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,