Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing

被引:485
|
作者
Ma, Zongwei [1 ,2 ]
Hu, Xuefei [2 ]
Huang, Lei [1 ]
Bi, Jun [1 ]
Liu, Yang [2 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA
关键词
AEROSOL OPTICAL DEPTH; DUST STORMS; RETRIEVALS; REGRESSION; MORTALITY; THICKNESS; POLLUTION; PRODUCTS; AERONET; TRENDS;
D O I
10.1021/es5009399
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating ground-level PM2.5 from satellite-derived aerosol optical depth (AOD) using a spatial statistical model is a promising new method to evaluate the spatial and temporal characteristics of PM2.5 exposure in a large geographic region. However, studies outside North America have been limited due to the lack of ground PM2.5 measurements to calibrate the model. Taking advantage of the newly established national monitoring network, we developed a national-scale geographically weighted regression (GWR) model to estimate daily PM2.5 concentrations in China with fused satellite AOD as the primary predictor. The results showed that the meteorological and land use information can greatly improve model performance. The overall cross-validation (CV) R-2 is 0.64 and root mean squared prediction error (RMSE) is 32.98 mu g/m(3). The mean prediction error (MPE) of the predicted annual PM2.5 is 8.28 mu g/m(3). Our predicted annual PM2.5 concentrations indicated that over 96% of the Chinese population lives in areas that exceed the Chinese National Ambient Air Quality Standard (CNAAQS) Level 2 standard. Our results also confirmed satellite-derived AOD in conjunction with meteorological fields and land use information can be successfully applied to extend the ground PM2.5 monitoring network in China.
引用
收藏
页码:7436 / 7444
页数:9
相关论文
共 50 条
  • [1] Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing
    Liu, Y
    Sarnat, JA
    Kilaru, A
    Jacob, DJ
    Koutrakis, P
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (09) : 3269 - 3278
  • [2] Deep Learning Architecture for Estimating Hourly Ground-Level PM2.5 Using Satellite Remote Sensing
    Sun, Yibo
    Zeng, Qiaolin
    Geng, Bing
    Lin, Xingwen
    Sude, Bilige
    Chen, Liangfu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1343 - 1347
  • [3] Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
    van Donkelaar, Aaron
    Martin, Randall V.
    Park, Rokjin J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D21)
  • [4] DEEP LEARNING FOR GROUND-LEVEL PM2.5 PREDICTION FROM SATELLITE REMOTE SENSING DATA
    Li, Tongwen
    Shen, Huanfeng
    Yuan, Qiangqiang
    Zhang, Liangpei
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7581 - 7584
  • [5] Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5
    Lin, Changqing
    Li, Ying
    Yuan, Zibing
    Lau, Alexis K. H.
    Li, Chengcai
    Fung, Jimmy C. H.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 117 - 128
  • [6] Estimating Ground-Level PM2.5 Using Fine-Resolution Satellite Data in the Megacity of Beijing, China
    Li, Rong
    Gong, Jianhua
    Chen, Liangfu
    Wang, Zifeng
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (04) : 1347 - 1356
  • [7] Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model
    Yang, Lijuan
    Xu, Hanqiu
    Jin, Zhifan
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 227 : 472 - 482
  • [8] Estimating ground-level PM2.5 concentration using Landsat 8 in Chengdu, China
    Chen, Yunping
    Han, Weihong
    Chen, Shuzhong
    Tong, Ling
    [J]. REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V, 2014, 9259
  • [9] Remote sensing of ground-level PM2.5 combining AOD and backscattering profile
    Li, Siwei
    Joseph, Everette
    Min, Qilong
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 183 : 120 - 128
  • [10] Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument
    Xu, J. -W.
    Martin, R. V.
    van Donkelaar, A.
    Kim, J.
    Choi, M.
    Zhang, Q.
    Geng, G.
    Liu, Y.
    Ma, Z.
    Huang, L.
    Wang, Y.
    Chen, H.
    Che, H.
    Lin, P.
    Lin, N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (22) : 13133 - 13144