Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation

被引:403
|
作者
Dong, Xiongbo [1 ,2 ]
Ren, Bangxing [2 ]
Sun, Zhiming [1 ]
Li, Chunquan [1 ]
Zhang, Xiangwei [1 ]
Kong, Minghao [2 ]
Zheng, Shuilin [1 ]
Dionysiou, Dionysios D. [2 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Univ Cincinnati, Dept Chem & Environm Engn ChEE, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
关键词
Copper ferrite; Kaolinite; Peroxymonosulfate; Sulfate radical; BPA; HETEROGENEOUS ACTIVATION; AQUEOUS-SOLUTION; ADVANCED OXIDATION; PHOTOCATALYTIC ACTIVITY; ORGANIC POLLUTANTS; HYDROXYL RADICALS; SULFATE; REMOVAL; PERSULFATE; WATER;
D O I
10.1016/j.apcatb.2019.04.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CuFe2O4/kaolinite catalysts were fabricated through a facile citrate combustion method and were evaluated for their efficiency to activate peroxymonosulfate (PMS) towards the destruction of bisphenol A (BPA). The prepared catalysts were systematically characterized to explore the relationship between their characteristics and catalytic activities. In general, higher specific surface area, larger pore volume, more hydroxyl groups, and more accessible reactive sites of 40%-CuFe2O4/Icaolinite contributed to the greater catalytic activity in peroxymonosulfate activation for BPA degradation compared to bare CuFe2O4. Monodispersed CuFe2O4 nano particles were uniformly anchored on the surface of kaolinite with Fe-O-Al bond, which prevented leaching of metal ions and contributed to the excellent reusability. The sulfate radicals produced in the CuFe2O4/kaolinite/PMS system were proved as the predominant radical species through electron spin resonance (ESR) and radical quenching experiments. Based on the results of X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance - Fourier transform infrared spectra (ATR-FTIR), two main possible pathways of sulfate radicals generation were proposed: the generation and decomposition of equivalent to Cu(II)-(HO)OSO3- (Cu(II)/Cu(III) and Cu (III)/Cu(II) redox reaction) and the oxidation of equivalent to Fe(II). Moreover, the BPA degradation pathway was proposed through the identification of transformation products. This work provides an interesting insight for PMS activation by the high-efficient natural mineral-based catalysts for wastewater reclamation.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [1] Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite
    Li, Yabin
    Chen, Zhonglin
    Qi, Jingyao
    Kang, Jing
    Shen, Jimin
    Yan, Pengwei
    Wang, Weiqiang
    Bi, Lanbo
    Zhang, Xiaoxiao
    Zhu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 277
  • [2] Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A
    Chen, Zhiqiang
    Wang, Luyao
    Xu, Haodan
    Wen, Qinxue
    CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [3] CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation
    Cao, Xiao-qiang
    Xiao, Fei
    Lyu, Zhi-wen
    Xie, Xiao-yu
    Zhang, Zhi-xing
    Dong, Xing
    Wang, Jun-xiang
    Lyu, Xian-jun
    Zhang, Yi-zhen
    Liang, Yue
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 44
  • [4] Magnetic CuFe2O4 nanoparticles immobilized on mesoporous alumina as highly efficient peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride
    Li, Qingyong
    Zhang, Jiayao
    Xu, Jiahui
    Cheng, Yunran
    Yang, Xiaoting
    He, Jiawen
    Liu, Yujun
    Chen, Jiayi
    Qiu, Bing
    Zhong, Yongming
    Sun, Rongrong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 342
  • [5] Efficient degradation of tetracycline hydrochloride by activated peroxymonosulfate with PdO/CuFe2O4/coal-bearing strata kaolinite composite
    Zhu, Lei
    Song, Wei
    Liu, Chengyong
    Gu, Wenzhe
    Zhao, Mengye
    Zhao, Yunpu
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 187
  • [6] The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process
    Xu, Yin
    Ai, Jia
    Zhang, Hui
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 309 : 87 - 96
  • [7] Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite (vol 277, 119492, 2021)
    Li, Yabin
    Chen, Zhonglin
    Qi, Jingyao
    Kang, Jing
    Shen, Jimin
    Yan, Pengwei
    Wang, Weiqiang
    Bi, Lanbo
    Zhang, Xiaoxiao
    Zhu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 325
  • [8] CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol
    Feng, Jie
    Su, Li
    Ma, Yanhua
    Ren, Cuiling
    Guo, Qing
    Chen, Xingguo
    CHEMICAL ENGINEERING JOURNAL, 2013, 221 : 16 - 24
  • [9] Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate
    Ding, Yaobin
    Zhu, Lihua
    Wang, Nan
    Tang, Heqing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 : 153 - 162
  • [10] Oxygen-vacancies rich CuFe2O4 catalyst as efficient peroxymonosulfate activator for enhanced oxytetracycline degradation: Performance and mechanism
    Deng, Tian
    He, Haonan
    Zeng, Li
    Wang, Hongbin
    Zou, Qinghua
    Gong, Xiaobo
    Sun, Mingchao
    Liu, Yong
    Zhao, Junfeng
    CHEMICAL ENGINEERING SCIENCE, 2024, 291