EXERGY ANALYSIS OF A SOLID OXIDE FUEL CELL-GAS TURBINE HYBRID POWER PLANT

被引:0
|
作者
Amati, Valentina [1 ]
Sciubba, Enrico [1 ]
Toro, Claudia [1 ]
机构
[1] Univ Roma1 La Sapienza, Dept Mech Engn, I-00184 Rome, Italy
来源
IMECE 2008: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2008, VOL 8 | 2009年
关键词
ENERGY; PERFORMANCE; SYSTEMS; DESIGN;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The paper presents the exergy analysis of a natural gas fuelled energy conversion process consisting of a hybrid solid oxide fuel Cell Coupled with a gas turbine. The fuel is partly processed in a reformer and then undergoes complete reforming in an internal reforming planar SOFC stack (IRSOFC). The syngas fuels in turn a standard gas turbine cycle that drives the fuel compressor and generates excess shaft power. Extensive heat recovery is enforced both in the Gas Turbine and between the topping SOFC and the bottoming GT. Two different configurations have been simulated and compared oil ail exergy basis: in the first one, the steam needed to support the external and the internal reforming reactions is completely supplied by ail external Heat Recovery Steam Generator (HRSG), while in the second one that steam is mainly obtained by recirculating part of the steam-rich anode outlet stream. The thermodynamic model of the fuel cell system has been developed and implemented into the library of a modular object-oriented Process Simulator, Camel-Pro (R); then, by means of this simulator, the exergetic performance of the two alternative configurations has been analyzed. A detailed analysis of the exergy destruction at component level is presented, to better assess the distribution of irreversibilities along the process and to gain useful design insight.
引用
收藏
页码:721 / 731
页数:11
相关论文
共 50 条
  • [1] Exergy Analysis and Optimization of Gasifier-Solid Oxide Fuel Cell-Gas Turbine Hybrid System
    Nandwana, Dev
    Raj, Amrit
    Kadkade, Tejas Deepak
    Sreekanth, Manavalla
    INTERNATIONAL ENERGY JOURNAL, 2019, 19 (04): : 233 - 242
  • [2] Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system
    Bavarsad, Pegah Ghanbari
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) : 4591 - 4599
  • [3] Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol
    Stamatis, Anastassios
    Vinni, Christina
    Bakalis, Diamantis
    Tzorbatzoglou, Fotini
    Tsiakaras, Panagiotis
    ENERGIES, 2012, 5 (11) : 4268 - 4287
  • [4] Performance Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power System
    Zhao, Hongbin
    Liu, Xu
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 319 - 322
  • [5] Application analysis of a hybrid solid oxide fuel cell-gas turbine system for marine power plants
    Serbin, Serhiy
    Washchilenko, Nikolay
    Cherednichenko, Oleksandr
    Burunsuz, Kateryna
    Dzida, Marek
    Chen, Daifen
    SHIPS AND OFFSHORE STRUCTURES, 2022, 17 (04) : 866 - 876
  • [6] Analysis of a pressurized solid oxide fuel cell-gas turbine hybrid power system with cathode gas recirculation
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Assabumrungrat, Suttichai
    Arpornwichanop, Amornchai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) : 4748 - 4759
  • [7] Modelling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant
    Chan, SH
    Ho, HK
    Tian, Y
    JOURNAL OF POWER SOURCES, 2003, 114 (02) : 213 - 227
  • [8] Solid Oxide Fuel Cell - Gas Turbine Hybrid Power Plant
    Henke, M.
    Willich, C.
    Steilen, M.
    Kallo, J.
    Friedrich, K. A.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 67 - 72
  • [9] Modeling and optimum design of hybrid solid oxide fuel cell-gas turbine power plants
    Mehrpooya, Mehdi
    Akbarpour, Sepide
    Vatani, Ali
    Rosen, Marc A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 21196 - 21214
  • [10] Performance evaluation of intermediate temperature solid oxide fuel cell-gas turbine hybrid power system
    Bavirisetti, Sushanth
    Sahu, Mithilesh Kumar
    WORLD JOURNAL OF ENGINEERING, 2023, 20 (01) : 186 - 195