Elastic Backbone Defines a New Transition in the Percolation Model

被引:9
|
作者
Sampaio Filho, Cesar I. N. [1 ]
Andrade, Jose S., Jr. [1 ,2 ]
Herrmann, Hans J. [1 ,2 ]
Moreira, Andre A. [1 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[2] Swiss Fed Inst Technol, IfB, Computat Phys Engn Mat, Schafmattstr 6, CH-8093 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
INFINITE-CLUSTER GEOMETRY; CENTRAL-FORCE NETWORKS; RIGIDITY PERCOLATION; DIMENSIONS; SYSTEMS; CANCER; PATH;
D O I
10.1103/PhysRevLett.120.175701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elastic backbone is the set of all shortest paths. We found a new phase transition at p(eb) above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750 +/- 0.003, and one obtains a novel set of critical exponents beta(eb) = 0.50 +/- 0.02, gamma(eb) = 1.97 +/- 0.05, and nu(eb) = 2.00 +/- 0.02, fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities p(eb) for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.
引用
收藏
页数:5
相关论文
共 50 条