An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces

被引:1
|
作者
Jozi, Meisam [1 ]
Karimi, Saeed [1 ]
Salkuyeh, Davod Khojasteh [2 ]
机构
[1] Persian Gulf Univ, Dept Math, Bushehr, Iran
[2] Univ Guilan, Fac Math Sci, Rasht, Iran
关键词
Ill-posed problem; First kind equations; Regularization method; LS-algorithm; Minimum norm; FREDHOLM INTEGRAL-EQUATIONS; GKB-FP; ALGORITHM; CONVERGENCE; LSQR; 1ST; REGULARIZATION; RULES;
D O I
10.1007/s13370-019-00685-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an algorithm to compute minimum norm solution of ill-posed problems in Hilbert spaces and investigate its regularizing properties with discrepancy principle stopping rule. This algorithm results from straightly applying the LSQR method to the main problem before discretizing. In fact, the proposed algorithm obtains a sequence of approximate solutions of the original problem. In order to test the new algorithm, it is implemented to solve system of linear integral equations of the first kind and some examples are given. Moreover, we compare the presented algorithm with the Tikhonov regularization method to compute the least norm solution when there are more than one solution.
引用
收藏
页码:797 / 816
页数:20
相关论文
共 50 条