Particle-number-conserving Bogoliubov approximation for Bose-Einstein condensates using extended catalytic states

被引:6
|
作者
Jiang, Zhang [1 ,2 ,3 ]
Caves, Carlton M. [1 ,4 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, MSC07-4220, Albuquerque, NM 87131 USA
[2] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Mail Stop 269-1, Moffett Field, CA 94035 USA
[3] Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA
[4] Univ Queensland, Sch Math & Phys, Ctr Engineered Quantum Syst, Brisbane, Qld 4072, Australia
基金
美国国家科学基金会;
关键词
2-PHOTON QUANTUM OPTICS; GROSS-PITAEVSKII; ENTANGLEMENT; PHASE; FORMALISM; VALIDITY; DYNAMICS; LIMITS; GASES;
D O I
10.1103/PhysRevA.93.033623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We encode the many-body wave function of a Bose-Einstein condensate (BEC) in the N-particle sector of an extended catalytic state. This catalytic state is a coherent state for the condensate mode and an arbitrary state for the modes orthogonal to the condensate mode. Going to a time-dependent interaction picture where the state of the condensate mode is displaced to the vacuum, we can organize the effective Hamiltonian by powers of N-1/2. Requiring the terms of order N-1/2 to vanish gives the Gross-Pitaevskii equation. Going to the next order, N-0, we derive equations for the number-conserving Bogoliubov approximation, first given by Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. In contrast to other approaches, ours is well suited to calculating the state evolution in the Schrodinger picture; moreover, it is straightforward to generalize our method to multicomponent BECs and to higher-order corrections.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bogoliubov excitations of disordered Bose-Einstein condensates
    Gaul, Christopher
    Mueller, Cord A.
    [J]. PHYSICAL REVIEW A, 2011, 83 (06)
  • [2] Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation
    Seiringer, Robert
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (07)
  • [3] Bogoliubov theory of the Hawking effect in Bose-Einstein condensates
    Leonhardt, U
    Kiss, T
    Öhberg, P
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S42 - S49
  • [4] Bogoliubov-wave turbulence in Bose-Einstein condensates
    Fujimoto, Kazuya
    Tsubota, Makoto
    [J]. PHYSICAL REVIEW A, 2015, 91 (05)
  • [5] Number-conserving mean-field theory for Bose-Einstein condensates
    de Passos, EJV
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1999, 32 (23) : 5619 - 5628
  • [6] Number-conserving approaches to n-component Bose-Einstein condensates
    Mason, Peter
    Gardiner, Simon A.
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [7] Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
    Recati, A.
    Pavloff, N.
    Carusotto, I.
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):
  • [8] Bogoliubov inequality and Bose-Einstein condensates with repulsive and attractive interactions
    Olinto, AC
    [J]. PHYSICAL REVIEW A, 2001, 64 (03): : 8
  • [9] Bogoliubov spectrum and Bragg spectroscopy of elongated Bose-Einstein condensates
    Tozzo, C
    Dalfovo, F
    [J]. NEW JOURNAL OF PHYSICS, 2003, 5
  • [10] A nonlinear dynamics approach to Bogoliubov excitations of Bose-Einstein condensates
    Kreibich, M.
    Cartarius, H.
    Main, J.
    Wunner, G.
    [J]. LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2012, 1468 : 216 - 222