We resolve several conjectures of J. Birman and R. F. Williams concerning the knotting and linking of closed orbits of flows on 3-manifolds. Our methods center on the symbolic dynamics of semiflows on branched 2-manifolds, or templates. By proving the existence of ''universal templates'', or embedded branched 2-manifolds supporting all finite links, we conclude that the set of closed orbits of any flow transverse to the fibration of the figure-eight knot complement in S-3 contains representatives of every (tame) knot and link isotopy class. Copyright (C) 1996 Elsevier Science Ltd
机构:
Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Pue, MexicoBenemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Pue, Mexico
Cartas-Fuentevilla, R.
Herrera-Aguilar, A.
论文数: 0引用数: 0
h-index: 0
机构:
Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Pue, MexicoBenemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Pue, Mexico
Herrera-Aguilar, A.
Berra-Montiel, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma San Luis Potosi, Fac Ciencias, Campus Pedregal,Av Parque,Chapultepec 1610, San Luis Potosi 78217, San Luis Potosi, MexicoBenemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Pue, Mexico
机构:
Département de Mathématiques, Faculté Des Sciences de Bizerte, 7021, ZarzounaDépartement de Mathématiques, Faculté Des Sciences de Bizerte, 7021, Zarzouna