Bipartite Rainbow Ramsey number of some graphs

被引:0
|
作者
Prema, J. [1 ]
Vijayalakshmi, V. [1 ]
机构
[1] Anna Univ, Dept Math, MIT Campus, Chennai 600044, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two bipartite graphs G and H, define BRR(G, H) to be the least positive integer N such that any coloring of the edges of K-N,(N) with any number of colors will result in a monochromatic copy of G or a rainbow copy of H. In this paper, we determine the exact values for BRR(K-1,K-n, B(s,t)), BRR(B(t,t), K-1,K-n)and bounds for BRR(B(s, t), K-1,K-n)BRR(B(s, t), mK(2)) and BRR(B(t, t), mK(2)).
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] SIZE RAMSEY NUMBER OF BIPARTITE GRAPHS AND BIPARTITE RAMANUJAN GRAPHS
    Javadi, R.
    Khoeini, F.
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 45 - 51
  • [2] The rainbow number of matchings in regular bipartite graphs
    Li, Xueliang
    Xu, Zhixia
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1525 - 1528
  • [3] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Tao Jiang
    Michael Salerno
    Graphs and Combinatorics, 2011, 27 : 121 - 128
  • [4] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Jiang, Tao
    Salerno, Michael
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 121 - 128
  • [5] Bipartite rainbow Ramsey numbers
    Eroh, L
    Oellermann, OR
    DISCRETE MATHEMATICS, 2004, 277 (1-3) : 57 - 72
  • [6] A BIPARTITE RAMSEY NUMBER
    EXOO, G
    GRAPHS AND COMBINATORICS, 1991, 7 (04) : 395 - 396
  • [7] GALLAI-RAMSEY NUMBERS FOR RAINBOW TREES AND MONOCHROMATIC COMPLETE BIPARTITE GRAPHS
    Li, Luyi
    Li, Xueliang
    Mao, Yaping
    Si, Yuan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [8] Bounds for Bipartite Rainbow Ramsey Numbers
    Ye Wang
    Yusheng Li
    Graphs and Combinatorics, 2017, 33 : 1065 - 1079
  • [9] Bounds for Bipartite Rainbow Ramsey Numbers
    Wang, Ye
    Li, Yusheng
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 1065 - 1079
  • [10] THREE-COLOR BIPARTITE RAMSEY NUMBER FOR GRAPHS WITH SMALL BANDWIDTH
    Mota, G. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 197 - 208