Biogeneration of (E,E)-2,4-hexadienal and (E)-4-hexen-1-ol from sorbic acid by Colletotrichum gloeosporoides cultures

被引:0
|
作者
Dulio, A [1 ]
Fuganti, C [1 ]
Zucchi, G [1 ]
机构
[1] CNR, Dipartimento Chim Politecn, Ctr Chim Sostanze Organ Nat, I-20133 Milan, Italy
关键词
sorbic acid; (E,E)-2,4-hexadienal; (E)-4-hexen-1-ol; Colletotrichum gloeosporoides; bioreduction;
D O I
暂无
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Growing cultures of Colletotrichum gloeosporoides CBS 193.32 reductively transformed sorbic acid 10 and the structurally related isomeric mono-unsaturated acids 11 and 12 into the corresponding unsaturated and saturated alcohols. In the case of 10 and 12, there was accumulation in the fermentation medium of up to 25% and 10%, respectively, of the intermediate aldehydes 7 and 5. The process, if applied to acid 10 of extractive botanical origin, would represent an access to the natural forms of the C(6) odorants (E,E)-2,4-hexadienal 7 and (E)-4-hexen-1-ol 9. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:79 / 81
页数:3
相关论文
共 50 条
  • [1] (E)-4-HEXEN-1-OL
    PAUL, R
    RIOBE, O
    MAUMY, M
    ORGANIC SYNTHESES, 1988, 50-9 : 675 - 679
  • [2] VIBRATIONAL ANALYSIS OF (E,E)-2,4-HEXADIENAL, (E,E,E)-2,4,6-OCTATRIENAL, AND (E,E,E)-3-METHYL-2,4,6-OCTATRIENAL
    ABOALY, MM
    BARON, MH
    FAVROT, J
    BELLOC, J
    REVAULT, M
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1985, 63 (07): : 1587 - 1593
  • [3] The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal
    O'Connor, Margaret P.
    Wenger, John C.
    Mellouki, Abdelwahid
    Wirtz, Klaus
    Munoz, Amalia
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (44) : 5236 - 5246
  • [4] Short-time dynamics and decay mechanism of E,E-2,4-hexadienal in the first light-absorbing S2(ππ*) state
    Liu, Jiafeng
    Xue, Jiadan
    Zhao, Yanying
    Zheng, Xuming
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (23):
  • [5] Rate coefficients for the gas-phase reaction of OH with (Z)-3-hexen-1-ol, 1-penten-3-ol, (E)-2-penten-1-ol, and (E)-2-hexen-1-ol between 243 and 404 K
    Davis, M. E.
    Burkholder, J. B.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (07) : 3347 - 3358
  • [6] Straightforward preparation of (2E,4Z)-2,4-heptadien-1-ol and (2E,4Z)-2,4-heptadienal
    Petroski, RJ
    SYNTHETIC COMMUNICATIONS, 2003, 33 (18) : 3233 - 3241
  • [7] Relative rate coefficient measurements of OH radical reactions with (Z)-2-hexen-1-ol and (E)-3-hexen-1-ol under simulated atmospheric conditions
    Peirone, Silvina A.
    Barrera, Javier A.
    Taccone, Raul A.
    Cometto, Pablo M.
    Lane, Silvia I.
    ATMOSPHERIC ENVIRONMENT, 2014, 85 : 92 - 98
  • [8] Impact of the Criegee Intermediate on the Formation of Secondary Organic Aerosols during E-4-Hexen-1-ol Ozonolysis
    Chen, Meifang
    Tong, Shengrui
    Yu, Shanshan
    Xu, Yanyong
    Lv, Xiaofan
    Zhang, Hailiang
    Wang, Shuai
    Ge, Maofa
    JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (06): : 1704 - 1713
  • [9] Titania-silica mixed oxides: Influence of reaction additives on the epoxidation of (E)-2-hexen-1-ol
    Dusi, M
    Mallat, T
    Baiker, A
    JOURNAL OF CATALYSIS, 1998, 173 (02) : 423 - 432
  • [10] Demonstration of a Runaway Exothermic Reaction: Diels-Alder Reaction of (2E,4E)-2,4-Hexadien-1-ol and Maleic Anhydride
    Parsons, Brendon A.
    Dragojlovic, Veljko
    JOURNAL OF CHEMICAL EDUCATION, 2011, 88 (11) : 1553 - 1557