A Characterization of the Unitary Highest Weight Modules by Euclidean Jordan Algebras

被引:0
|
作者
Bai, Zhanqiang [1 ]
机构
[1] Hong Kong Univ Sci & Tech, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Euclidean Jordan algebras; unitary highest weight module; quadratic relation; Joseph Ideal; HERMITIAN SYMMETRIC-SPACES; ORBIT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let co(J) be the conformal algebra of a simple Euclidean Jordan algebra J. We show that a (non-trivial) unitary highest weight co (J)-module has the smallest positive Gelfand-Kirillov dimension if and only if a certain quadratic relation is satisfied in the universal enveloping algebra U(ca(J)(c)). In particular, we find an quadratic element in U(co(J)(C)). A prime ideal in U(co(J)(C)) equals the Joseph ideal if and only if it contains this quadratic element.
引用
收藏
页码:747 / 778
页数:32
相关论文
共 50 条