Extremes of space-time Gaussian processes

被引:9
|
作者
Kabluchko, Zakhar [1 ]
机构
[1] Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
关键词
Extremes; Gaussian processes; Space-time processes; Pickands method; Max-stable processes; Empirical process; Functional limit theorem; HIGH-LEVEL CROSSINGS; SPATIAL EXTREMES; RANDOM VECTORS; STATIONARY; SEQUENCES; MAXIMA; DISTRIBUTIONS; INDEPENDENCE; VALUES;
D O I
10.1016/j.spa.2009.08.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Z = {Z(t) (h); h is an element of R(d), t is an element of R} be a space-time Gaussian process which is stationary in the time variable t. We study M(n)(h) = sup(t is an element of[0, n]) Z(t) (s(n)h), the supremum of Z taken over t is an element of [0, n] and rescaled by a properly chosen sequence s(n) -> 0. Under appropriate conditions on Z, we show that for some normalizing sequence b(n) -> infinity, the process b(n)(M(n) - b(n)) converges as n -> infinity to a stationary max-stable process of Brown-Resnick type. Using strong approximation, we derive an analogous result for the empirical process. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3962 / 3980
页数:19
相关论文
共 50 条
  • [1] Scalable inference for space-time Gaussian Cox processes
    Shirota, Shinichiro
    Banerjee, Sudipto
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 269 - 287
  • [2] SPACE-TIME EXTREMES IN SEA STORMS
    Fedele, Francesco
    Arena, Felice
    Tayfun, M. Aziz
    [J]. OMAE2011: PROCEEDINGS OF THE ASME 30TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, VOL 2: STRUCTURES, SAFETY AND RELIABILITY, 2011, : 13 - +
  • [3] Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes
    Wang, Fangpo
    Gelfand, Alan E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1565 - 1580
  • [4] Discrete and continuous time extremes of Gaussian processes
    Piterbarg V.I.
    [J]. Extremes, 2004, 7 (2) : 161 - 177
  • [5] Extremes of the time-average of stationary Gaussian processes
    Debicki, Krzysztof
    Tabis, Kamil
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (09) : 2049 - 2063
  • [6] Aggregation of space-time processes
    Giacomini, R
    Granger, CWJ
    [J]. JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 7 - 26
  • [7] Space-Time Wave Extremes: The Role of Metocean Forcings
    Barbariol, Francesco
    Benetazzo, Alvise
    Carniel, Sandro
    Sclavo, Mauro
    [J]. JOURNAL OF PHYSICAL OCEANOGRAPHY, 2015, 45 (07) : 1897 - 1916
  • [8] On Adler space-time extremes during ocean storms
    Romolo, Alessandra
    Arena, Felice
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (04) : 3022 - 3042
  • [9] A SEMIPARAMETRIC METHOD TO SIMULATE BIVARIATE SPACE-TIME EXTREMES
    Chailan, Romain
    Toulemonde, Gwladys
    Bacro, Jean-Noel
    [J]. ANNALS OF APPLIED STATISTICS, 2017, 11 (03): : 1403 - 1428
  • [10] Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes
    Andrew O. Finley
    Sudipto Banerjee
    Alan E. Gelfand
    [J]. Journal of Geographical Systems, 2012, 14 : 29 - 47