LIFTING CENTRAL INVARIANTS OF QUANTIZED HAMILTONIAN ACTIONS

被引:0
|
作者
Losev, Ivan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Reductive groups; Hamiltonian actions; central invariants; quantization; DIFFERENTIAL-OPERATORS; SPACES; WEYL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected reductive group over an algebraically closed field K of characteristic 0, X an affine symplectic variety equipped with a Hamiltonian action of G. Further, let * be a G-invariant Fedosov star-product on X such that the Hamiltonian action is quantized. We establish an isomorphism between the center of the quantum algebra K[X][[h]](G) and the algebra of formal power series with coefficients in the Poisson center of K[X](G).
引用
收藏
页码:359 / 369
页数:11
相关论文
共 50 条
  • [1] COMBINATORIAL INVARIANTS OF ALGEBRAIC HAMILTONIAN ACTIONS
    Losev, Ivan
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (03) : 493 - 519
  • [2] Polarized orbifolds associated to quantized Hamiltonian torus actions
    Paoletti, Roberto
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [3] SOME DETERMINATIONS ON THE LIFTING PROBLEM OF HAMILTONIAN ACTIONS ON SYMPLETIC MANIFOLDS
    BUNCHAFT, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 85 (02): : 149 - 160
  • [4] ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS
    Grzeszczuk, Piotr
    Hryniewicka, Malgorzata
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2010, 52A : 93 - 102
  • [5] J-holomorphic curves, moment maps, and invariants of Hamiltonian group actions
    Cieliebak, K
    Gaio, AR
    Salamon, DA
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (16) : 831 - 882
  • [6] Hamiltonian Quantized Gossip
    Franceschelli, Mauro
    Giua, Alessandro
    Seatzu, Carla
    [J]. 2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 648 - 654
  • [7] Sobolev Lifting over Invariants
    Parusinski, Adam
    Rainer, Armin
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [8] Lifting invariants of projective subschemes
    Ellia, P
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (05) : 529 - 539
  • [9] Quantized consensus in Hamiltonian graphs
    Franceschelli, Mauro
    Giua, Alessandro
    Seatzu, Carla
    [J]. AUTOMATICA, 2011, 47 (11) : 2495 - 2503
  • [10] Hamiltonian systems on quantized spaces
    Abad, ASD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20): : 4795 - 4803