共 50 条
BOUNDING SECTIONAL CURVATURE ALONG THE KAHLER-RICCI FLOW
被引:6
|作者:
Ruan, Wei-Dong
[1
]
Zhang, Yuguang
[1
,2
]
Zhang, Zhenlei
[2
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Capital Normal Univ, Dept Math, Beijing, Peoples R China
基金:
中国国家自然科学基金;
新加坡国家研究基金会;
关键词:
Kahler-Ricci flow;
curvature operator;
Cheeger-Gromov convergence;
Gromov-Hausdorff convergence;
Kahler-Einstein metric;
Kahler-Ricci soliton;
1ST CHERN CLASS;
CONVERGENCE;
MANIFOLDS;
CONSTRUCTION;
METRICS;
D O I:
10.1142/S0219199709003673
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
If a normalized Kahler-Ricci flow g(t), t is an element of [0,infinity), on a compact Kahler manifold M, dim(C) M = n >= 3, with positive first Chern class satisfies g(t) is an element of 2 pi c(1)(M) and has curvature operator uniformly bounded in L-n-norm, the curvature operator will also be uniformly bounded along the flow. Consequently, the flow will converge along a subsequence to a Kahler-Ricci soliton.
引用
收藏
页码:1067 / 1077
页数:11
相关论文