BOUNDING SECTIONAL CURVATURE ALONG THE KAHLER-RICCI FLOW

被引:6
|
作者
Ruan, Wei-Dong [1 ]
Zhang, Yuguang [1 ,2 ]
Zhang, Zhenlei [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Capital Normal Univ, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Kahler-Ricci flow; curvature operator; Cheeger-Gromov convergence; Gromov-Hausdorff convergence; Kahler-Einstein metric; Kahler-Ricci soliton; 1ST CHERN CLASS; CONVERGENCE; MANIFOLDS; CONSTRUCTION; METRICS;
D O I
10.1142/S0219199709003673
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a normalized Kahler-Ricci flow g(t), t is an element of [0,infinity), on a compact Kahler manifold M, dim(C) M = n >= 3, with positive first Chern class satisfies g(t) is an element of 2 pi c(1)(M) and has curvature operator uniformly bounded in L-n-norm, the curvature operator will also be uniformly bounded along the flow. Consequently, the flow will converge along a subsequence to a Kahler-Ricci soliton.
引用
收藏
页码:1067 / 1077
页数:11
相关论文
共 50 条