A new localization set for generalized eigenvalues

被引:0
|
作者
Gao, Jing [1 ]
Li, Chaoqian [2 ]
机构
[1] Guangzhou Vocat Coll Technol & Business, Dept Math, Guangzhou 510000, Guangdong, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
generalized eigenvalue; inclusion set; matrix pencil;
D O I
10.1186/s13660-017-1388-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new localization set for generalized eigenvalues is obtained. It is shown that the new set is tighter than that in (Numer. Linear Algebra Appl. 16: 883-898, 2009). Numerical examples are given to verify the corresponding results.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A new localization set for generalized eigenvalues
    Jing Gao
    Chaoqian Li
    Journal of Inequalities and Applications, 2017
  • [2] Localization of generalized eigenvalues by Cartesian ovals
    Kostic, V.
    Varga, R. S.
    Cvetkovic, L.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (04) : 728 - 741
  • [3] New Sufficient Conditions for the Computation of Generalized Eigenvalues
    Khellaf, A.
    Merchela, W.
    Guebbai, H.
    RUSSIAN MATHEMATICS, 2021, 65 (02) : 65 - 68
  • [4] New Sufficient Conditions for the Computation of Generalized Eigenvalues
    A. Khellaf
    W. Merchela
    H. Guebbai
    Russian Mathematics, 2021, 65 : 65 - 68
  • [5] Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
    Nakatsukasa, Yuji
    Noferini, Vanni
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 272 - 296
  • [6] A new generalized intuitionistic fuzzy set
    Jamkhaneh, Ezzatallah Baloui
    Nadarajah, Saralees
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1537 - 1551
  • [7] On the eigenvalues of generalized and double generalized stars
    Barioli, F
    Fallat, S
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (04): : 269 - 291
  • [8] GENERALIZED EIGENVALUES OF AUTOMORPHISMS
    AKCOGLU, MA
    CHACON, RV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (04) : 676 - +
  • [9] On blind source separation using generalized eigenvalues with a new metric
    Liu, Hai-lin
    Cheung, Yiu-ming
    NEUROCOMPUTING, 2008, 71 (4-6) : 973 - 982
  • [10] GENERALIZED MEANS OF EIGENVALUES
    BANKS, DO
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 23 (02) : 409 - &