Contact Resistance Effects in Carbon Nanotube Thin Film Transistors

被引:8
|
作者
Xia Ji-Ye [1 ]
Dong Guo-Dong [1 ]
Tian Bo-Yuan [1 ]
Yan Qiu-Ping [1 ]
Han Jie [2 ]
Qiu Song [2 ]
Li Qing-Wen [2 ]
Liang Xue-Lei [1 ]
Peng Lian-Mao [1 ]
机构
[1] Peking Univ, Dept Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanotube; Thin film transistor; Contact resistance; Ohmic contact; Schottky barrier; MACROELECTRONICS; PERFORMANCE; FABRICATION; DISPERSION; SEPARATION; CIRCUITS;
D O I
10.3866/PKU.WHXB201601292
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The contact resistance effect in the network type carbon nanotube thin film transistors (CNT-TFTs) is studied by using different contact metals. It is shown that palladium (Pd) can form an ohmic type contact with the carbon nanotube thin film, and gold (Au) forms an almost ohmic contact. On-state current and carrier mobility in the devices of these two contacts are high. In contrast, both titanium (Ti) and aluminum (Al) form Schottky type contacts with the carbon nanotube thin film. The barrier height and the contact resistance of the Al contact are higher than those of the Ti contact. Therefore, the on-state current and carrier mobility are relatively low in the corresponding devices of these two types of contacts. These results indicate that the performance of CNTTFTs can be tuned by the contact metal, which is important for the commercialization of CNT-TFTs.
引用
收藏
页码:1029 / 1035
页数:7
相关论文
共 30 条
  • [1] Theory of nanocomposite network transistors for macroelectronics applications
    Alam, M. A.
    Pimparkar, N.
    Kumar, S.
    Murthy, J.
    [J]. MRS BULLETIN, 2006, 31 (06) : 466 - 470
  • [2] Sorting carbon nanotubes by electronic structure using density differentiation
    Arnold, Michael S.
    Green, Alexander A.
    Hulvat, James F.
    Stupp, Samuel I.
    Hersam, Mark C.
    [J]. NATURE NANOTECHNOLOGY, 2006, 1 (01) : 60 - 65
  • [3] Bae SC, 2002, J KOREAN PHYS SOC, V41, P1063
  • [4] Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors
    Cao, Qing
    Xia, Minggang
    Kocabas, Coskun
    Shim, Moonsub
    Rogers, John A.
    Rotkin, Slava V.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (02)
  • [5] Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes
    Cao, Xuan
    Chen, Haitian
    Gu, Xiaofei
    Liu, Bilu
    Wang, Wenli
    Cao, Yu
    Wu, Fanqi
    Zhu, Chongwu
    [J]. ACS NANO, 2014, 8 (12) : 12769 - 12776
  • [6] Review of carbon nanotube nanoelectronics and macroelectronics
    Che, Yuchi
    Chen, Haitian
    Gui, Hui
    Liu, Jia
    Liu, Bilu
    Zhou, Chongwu
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (07)
  • [7] Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control
    Chen, Pochiang
    Fu, Yue
    Aminirad, Radnoosh
    Wang, Chuan
    Zhang, Jialu
    Wang, Kang
    Galatsis, Kosmas
    Zhou, Chongwu
    [J]. NANO LETTERS, 2011, 11 (12) : 5301 - 5308
  • [8] The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors
    Chen, ZH
    Appenzeller, J
    Knoch, J
    Lin, YM
    Avouris, P
    [J]. NANO LETTERS, 2005, 5 (07) : 1497 - 1502
  • [9] Highly uniform carbon nanotube nanomesh network transistors
    Choi, Sung-Jin
    Bennett, Patrick
    Lee, Dongil
    Bokor, Jeffrey
    [J]. NANO RESEARCH, 2015, 8 (04) : 1320 - 1326
  • [10] Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping
    Gomulya, Widianta
    Diaz Costanzo, Guadalupe
    Figueiredo de Carvalho, Elton J.
    Bisri, Satria Zulkarnaen
    Derenskyi, Vladimir
    Fritsch, Martin
    Froehlich, Nils
    Allard, Sybille
    Gordiichuk, Pavlo
    Herrmann, Andreas
    Marrink, Siewert Jan
    dos Santos, Maria Cristina
    Scherf, Ulrich
    Loi, Maria Antonietta
    [J]. ADVANCED MATERIALS, 2013, 25 (21) : 2948 - 2956