Automated Detection of Production Cycles in Production Plants using Machine Learning

被引:0
|
作者
Bunte, Andreas [1 ]
Ressler, Henrik [1 ]
Moriz, Natalia [1 ]
机构
[1] Ostwestfalen Lippe Univ Appl Sci & Arts, inIT Inst Ind IT, Lemgo, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven algorithms can be used to derive new information from data. In modern production plants, this can be used to reduce manual effort, e.g. to create a behavior model. In this work, one offline and one online algorithm are introduced that can determine the production cycles automatically. The algorithms use learned automaton to detect production cycles. A first evaluation is presented, which points out differences of the algorithms. However, overall the results are promising.
引用
收藏
页码:1419 / 1422
页数:4
相关论文
共 50 条
  • [1] ANOMALY DETECTION IN PRODUCTION PLANTS USING TIMED AUTOMATA Automated Learning of Models from Observations
    Maier, Alexander
    Niggemann, Oliver
    Just, Roman
    Jaeger, Michael
    Vodencarevic, Asmir
    [J]. ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2011, : 363 - 369
  • [2] Improving energy efficiency in ammonia production plants using machine learning
    El-Maghraby, Rehab M.
    Mohamed, Ahmed Y.
    Hassanean, M. H. M.
    [J]. FUEL, 2024, 363
  • [3] Production Time Prediction for Contract Manufacturing Industries Using Automated Machine Learning
    Sousa, Afonso
    Ferreira, Luis
    Ribeiro, Rui
    Xavier, Joao
    Pilastri, Andre
    Cortez, Paulo
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART II, 2022, 647 : 262 - 273
  • [4] Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning
    Schweitzer, Felicia
    Bitsch, Guenter
    Louw, Louis
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [5] Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning
    Krupp, Lukas
    Wiede, Christian
    Friedhoff, Joachim
    Grabmaier, Anton
    [J]. SENSORS, 2023, 23 (20)
  • [6] Operating cycles of automated production systems
    Musatova A.I.
    Kulakov S.M.
    Kadykov V.N.
    [J]. Steel in Translation, 2011, 41 (4) : 294 - 300
  • [7] Prediction of the Methane Production in Biogas Plants Using a Combined Gompertz and Machine Learning Model
    Hansen, Bolette D.
    Tamouk, Jamshid
    Tidmarsh, Christian A.
    Johansen, Rasmus
    Moeslund, Thomas B.
    Jensen, David G.
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 734 - 745
  • [8] MACHINE DIAGNOSTICS IN AUTOMATED PRODUCTION
    WECK, M
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 1983, 2 (02) : 101 - 106
  • [9] Automated Detection of Racial Microaggressions using Machine Learning
    Ali, Omar
    Scheidt, Nancy
    Gegov, Alexander
    Haig, Ella
    Adda, Mo
    Aziz, Benjamin
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2477 - 2484
  • [10] Automated Detection of Facial Weakness Using Machine Learning
    Uribe, Omar A.
    McDonald, Mark M.
    Zhuang, Yan
    Lin, Iris L.
    Arteaga, Daniel F.
    Dalrymple, William A.
    Worrall, Bradford B.
    Rohde, Gustavo K.
    Southerland, Andrew M.
    [J]. STROKE, 2018, 49