Canonical perturbative approach to nonlinear systems with application to optical waves in layered Kerr media

被引:0
|
作者
Laine, TA [1 ]
Friberg, AT [1 ]
机构
[1] Royal Inst Technol, Dept Phys Opt, SE-10044 Stockholm, Sweden
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.7098
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate electromagnetic wave reflection and propagation in layered Kerr structures by introducing a method based on the application of canonical perturbation theory to fields in nonlinear media. Via the Hamilton-Jacobi formalism of classical mechanics, the waves in linear layers are expressed with constant canonical variables. The nonlinearity is treated as a small perturbation that modifies the constant invariants. We explicitly evaluate the nonlinear fields correct to first order by perturbation and compare the results to a rigorous nonlinear thin-layer model. Both polarizations, TE and TM, are considered separately. An exact quadrature solution of the nonlinear field in TM polarization is derived. We show that with weak nonlinearities the perturbative technique yields simple and accurate analytical expressions for the nonlinear fields. The results give physical insight into the use of nonlinear media for controlling the scattered fields in layered structures.
引用
收藏
页码:7098 / 7109
页数:12
相关论文
共 50 条
  • [1] Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
    Shcherbakov, AS
    Rodriguez, ET
    Sanchez, MS
    [J]. LASER OPTICS 2003: DIODE LASERS AND TELECOMMUNICATION SYSTEMS, 2004, 5480 : 130 - 137
  • [2] TE waves at a nonlinear interface in Kerr media
    Wabia, M
    Zeglinski, G
    [J]. ACTA PHYSICA POLONICA A, 2001, 99 (01) : 87 - 99
  • [3] Nonlinear Optical Eigenmodes; Perturbative approach
    Docherty-Walthew, Graeme S.
    Mazilu, Michael
    [J]. COMPLEX LIGHT AND OPTICAL FORCES XIII, 2019, 10935
  • [4] Localization of nonlinear waves in layered media
    Gerasimchuk, IV
    Kovalev, AS
    [J]. LOW TEMPERATURE PHYSICS, 2000, 26 (08) : 586 - 593
  • [5] Localization of nonlinear waves in layered media
    Gerasimchuk, I.V.
    Kovalev, A.S.
    [J]. Fizika Nizkikh Temperatur (Kharkov), 2000, 26 (08): : 808 - 809
  • [6] Solitary waves in layered nonlinear media
    Leveque, RJ
    Yong, DH
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) : 1539 - 1560
  • [7] Nonparaxial rogue waves in optical Kerr media
    Temgoua, D. D. Estelle
    Kofane, T. C.
    [J]. PHYSICAL REVIEW E, 2015, 91 (06):
  • [8] Nonlinear waves in optical media
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1896 - 1903
  • [9] Nonlinear optical Kerr coefficients of disordered media
    de Araujo, RE
    Gomes, ASL
    [J]. PHYSICAL REVIEW A, 1998, 57 (03): : 2037 - 2040
  • [10] SURFACE OPTICAL WAVES AT THE BOUNDARY WITH A NONLINEAR KERR MEDIUM
    Petrov, N. S.
    Zimin, A. B.
    [J]. JOURNAL OF APPLIED SPECTROSCOPY, 2011, 78 (03) : 365 - 370