expanded mixed finite-element methods;
a priori error estimates;
a posteriori error estimates;
D O I:
10.1002/num.20178
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, we construct an a posteriori error estimator for expanded mixed hybrid finite-element methods for second-order elliptic problems. An a posteriori error analysis yields reliable and efficient estimate based on residuals. Several numerical examples are presented to show the effectivity of our error indicators. (c) 2006 Wiley Periodicals, Inc.
机构:
Univ Lyon 1, Equipe Anal Numer Lyon St Etienne, UMR 5585, F-69622 Villeurbanne, FranceUniv Lyon 1, Equipe Anal Numer Lyon St Etienne, UMR 5585, F-69622 Villeurbanne, France
Agouzal, A
Oudin, F
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon 1, Equipe Anal Numer Lyon St Etienne, UMR 5585, F-69622 Villeurbanne, FranceUniv Lyon 1, Equipe Anal Numer Lyon St Etienne, UMR 5585, F-69622 Villeurbanne, France
机构:
School of Applied Mathematics,Central University of Finance and EconomicsSchool of Applied Mathematics,Central University of Finance and Economics
JIA ShangHui
CHEN HongTao
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematical Sciences,Xiamen UniversitySchool of Applied Mathematics,Central University of Finance and Economics
CHEN HongTao
XIE HeHu
论文数: 0引用数: 0
h-index: 0
机构:
LSEC,NCMIS,Institute of Computational Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of SciencesSchool of Applied Mathematics,Central University of Finance and Economics