Log-Ratio Analysis Is a Limiting Case of Correspondence Analysis

被引:31
|
作者
Greenacre, Michael [1 ]
机构
[1] Univ Pompeu Fabra, Dept Econ & Empresa, Barcelona 08005, Spain
关键词
Compositional data analysis; Contingency ratios; Distributional equivalence; Log-ratios; Power transformation; Spectral mapping; COMPOSITIONAL DATA; PATTERNS;
D O I
10.1007/s11004-008-9212-2
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
It is common practice in compositional data analysis to perform the log-ratio transformation in order to preserve sub-compositional coherence in the analysis. Correspondence analysis is an alternative approach to analyzing ratio-scale data and is often contrasted with log-ratio analysis. It turns out that if one introduces a power transformation into the correspondence analysis algorithm, then the limit of the power-transformed correspondence analysis, as the power parameter tends to zero, is exactly the log-ratio analysis. Depending on how the power transformation is applied, we can obtain as limiting cases either Aitchison's unweighted log-ratio analysis or the weighted form called "spectral mapping". The upshot of this is that one can come as close as one likes to the log-ratio analysis, weighted or unweighted, using correspondence analysis.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 50 条
  • [1] Log-Ratio Analysis Is a Limiting Case of Correspondence Analysis
    Michael Greenacre
    [J]. Mathematical Geosciences, 2010, 42 : 129 - 134
  • [2] Log-ratio compositional data analysis in archaeometry
    Baxter, M. J.
    Freestone, I. C.
    [J]. ARCHAEOMETRY, 2006, 48 : 511 - 531
  • [3] Numerical Stability Analysis of the Centered Log-Ratio Transformation
    Galletti, Ardelio
    Maratea, Antonio
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 713 - 716
  • [4] Log-ratio lasso: Scalable, sparse estimation for log-ratio models
    Bates, Stephen
    Tibshirani, Robert
    [J]. BIOMETRICS, 2019, 75 (02) : 613 - 624
  • [5] Improved analysis of bacterial CGH data beyond the log-ratio paradigm
    Snipen, Lars
    Nyquist, Otto L.
    Solheim, Margrete
    Aakra, Agot
    Nes, Ingolf F.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [6] Regression analysis with compositional data using orthogonal log-ratio coordinates
    Giancristofaro, R. Arboretti
    Gastaldi, M.
    Martinello, L.
    Meneguzzer, C.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1932 - 1945
  • [7] Improved analysis of bacterial CGH data beyond the log-ratio paradigm
    Lars Snipen
    Otto L Nyquist
    Margrete Solheim
    Ågot Aakra
    Ingolf F Nes
    [J]. BMC Bioinformatics, 10
  • [8] Log-ratio analysis of microbiome data with many zeroes is library size dependent
    te Beest, Dennis E.
    Nijhuis, Els H.
    Mohlmann, Tim W. R.
    ter Braak, Cajo J. F.
    [J]. MOLECULAR ECOLOGY RESOURCES, 2021, 21 (06) : 1866 - 1874
  • [9] Counts: an outstanding challenge for log-ratio analysis of compositional data in the molecular biosciences
    Lovell, David R.
    Chua, Xin-Yi
    McGrath, Annette
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [10] Using isometric log-ratio in compositional data analysis for developing a groundwater pollution index
    Oh, Junseop
    Kim, Kyoung-Ho
    Kim, Ho-Rim
    Park, Sunhwa
    Yun, Seong-Taek
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):