Asymptotics of the solution to a singularly perturbed timeoptimal control problem with two small parameters

被引:2
|
作者
Danilin, A. R. [1 ,2 ,3 ]
Kovrizhnykh, O. O. [3 ,4 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Phys Math Sci, Ekaterinburg 620108, Russia
[2] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620108, Russia
[3] Ural Fed Univ, Ekaterinburg 620002, Russia
[4] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Sci Phys Math, Ekaterinburg 620108, Russia
来源
关键词
optimal control; time-optimal control problem; asymptotic expansion; singularly perturbed problem; small parameter; TIME-OPTIMAL CONTROL;
D O I
10.21538/0134-4889-2019-25-2-88-101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper continues the author's previous studies. We consider a time-optimal control problem for a singularly perturbed linear autonomous system with two independent small parameters and smooth geometric constraints on the control in the form of a ball [GRAPHICS] The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix J at the fast variables is the second-order Jordan block with zero eigenvalue and, thus, does not satisfy the standard asymptotic stability condition. Continuing the research, we consider initial conditions depending on the second small parameter mu. We derive and justify a complete asymptotic expansion in the sense of Erdelyi of the optimal time and optimal control with respect to the asymptotic sequence epsilon(gamma)(epsilon(k) + mu(k)), 0 < gamma < 1.
引用
收藏
页码:88 / 101
页数:14
相关论文
共 50 条