High-Fidelity Geometric Quantum Gates with Short Paths on Superconducting Circuits

被引:17
|
作者
Li, Sai [1 ,2 ]
Xue, Jing [1 ,2 ]
Chen, Tao [1 ,2 ]
Xue, Zheng-Yuan [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
nonadiabatic geometric phases; quantum gates; short path; superconducting circuits; STATE; QUBITS; SPIN;
D O I
10.1002/qute.202000140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Geometric phases are robust against certain types of local noises, and thus provide a promising way toward high-fidelity quantum gates. However, comparing with the dynamical ones, previous implementations of nonadiabatic geometric quantum gates usually require longer evolution time, due to the needed longer evolution path. Here, a scheme is proposed to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques, instead of deliberated pulse control in previous investigations, which can thus further suppress the influence from the environment induced noises. Specifically, the idea is illustrated on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer. As the current scheme shortens the geometric evolution path, ultra-high gate fidelity can be obtained, especially for the two-qubit gate case, as verified by the numerical simulation. Therefore, the protocol suggests a promising way toward high-fidelity and robust quantum computation on a solid-state quantum system.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] High-fidelity qutrit entangling gates for superconducting circuits
    Goss, Noah
    Morvan, Alexis
    Marinelli, Brian
    Mitchell, Bradley K.
    Nguyen, Long B.
    Naik, Ravi K.
    Chen, Larry
    Junger, Christian
    Kreikebaum, John Mark
    Santiago, David I.
    Wallman, Joel J.
    Siddiqi, Irfan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] High-fidelity qutrit entangling gates for superconducting circuits
    Noah Goss
    Alexis Morvan
    Brian Marinelli
    Bradley K. Mitchell
    Long B. Nguyen
    Ravi K. Naik
    Larry Chen
    Christian Jünger
    John Mark Kreikebaum
    David I. Santiago
    Joel J. Wallman
    Irfan Siddiqi
    Nature Communications, 13
  • [3] Author Correction: High-fidelity qutrit entangling gates for superconducting circuits
    Noah Goss
    Alexis Morvan
    Brian Marinelli
    Bradley K. Mitchell
    Long B. Nguyen
    Ravi K. Naik
    Larry Chen
    Christian Jünger
    John Mark Kreikebaum
    David I. Santiago
    Joel J. Wallman
    Irfan Siddiqi
    Nature Communications, 14
  • [4] High-Fidelity and Robust Geometric Quantum Gates that Outperform Dynamical Ones
    Chen, Tao
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2020, 14 (06):
  • [5] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    王治旻
    马壮
    喻祥敏
    郑文
    周坤
    张宇佳
    张钰
    兰栋
    赵杰
    谭新生
    李邵雄
    于扬
    Chinese Physics B, 2023, 32 (10) : 244 - 248
  • [6] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
    Wang, Zhimin
    Ma, Zhuang
    Yu, Xiangmin
    Zheng, Wen
    Zhou, Kun
    Zhang, Yujia
    Zhang, Yu
    Lan, Dong
    Zhao, Jie
    Tan, Xinsheng
    Li, Shaoxiong
    Yu, Yang
    CHINESE PHYSICS B, 2023, 32 (10)
  • [7] High-fidelity qutrit entangling gates for superconducting circuits (vol 13, 7481, 2022)
    Goss, Noah
    Morvan, Alexis
    Marinelli, Brian
    Mitchell, Bradley K.
    Nguyen, Long B.
    Naik, Ravi K.
    Chen, Larry
    Junger, Christian
    Kreikebaum, John Mark
    Santiago, David I.
    Wallman, Joel J.
    Siddiqi, Irfan
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] High-fidelity quantum memory with floating electrons coupled to superconducting circuits
    Xie, Ji-kun
    Cao, Rong-teng
    Ren, Ya-long
    Ma, Sheng-li
    Zhang, Ren
    Li, Fu-li
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [9] High-fidelity quantum gates in the presence of dispersion
    Khani, B.
    Merkel, S. T.
    Motzoi, F.
    Gambetta, Jay M.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [10] Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer
    Du, Jiangfeng
    Zou, Ping
    Wang, Z. D.
    PHYSICAL REVIEW A, 2006, 74 (02):