Metadata-driven creation of data marts from an EAV-modeled clinical research database

被引:30
|
作者
Brandt, CA [1 ]
Morse, R [1 ]
Matthews, K [1 ]
Sun, KX [1 ]
Deshpande, AM [1 ]
Gadagkar, R [1 ]
Cohen, DB [1 ]
Miller, PL [1 ]
Nadkarni, PM [1 ]
机构
[1] Yale Univ, Sch Med, Ctr Med Informat, New Haven, CT 06520 USA
关键词
data marts; Entity-Attribute-Value databases; clinical study data management systems;
D O I
10.1016/S1386-5056(02)00047-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generic clinical study data management systems can record data on an arbitrary number of parameters in an arbitrary number of clinical studies without requiring modification of the database schema. They achieve this by using an Entity-Attribute-Value (EAV) model for clinical data. While very flexible for creating transaction-oriented systems for data entry and browsing of individual forms, EAV-modeled data is unsuitable for direct analytical processing, which is the focus of data marts. For this purpose, such data must be extracted and restructured appropriately. This paper describes how such a process, which is non-trivial and highly error prone if performed using non-systematic approaches, can be automated by judicious use of the study metadata-the descriptions of measured parameters and their higher-level grouping. The metadata, in addition to driving the process, is exported along with the data, in order to facilitate its human interpretation. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 32 条
  • [1] Research on Metadata-Driven Data Quality Assessment Architecture
    Huang, Gang
    Wu, Xiuying
    Yuan, Man
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 419 - 422
  • [2] Research on Metadata-driven Enterprise Data Modeling System
    Miao, Hong
    Sun, Jingsheng
    Ge, Shilun
    Wang, Nianxin
    ELECTRONIC-BUSINESS INTELLIGENCE: FOR CORPORATE COMPETITIVE ADVANTAGES IN THE AGE OF EMERGING TECHNOLOGIES & GLOBALIZATION, 2010, 14 : 335 - +
  • [3] Metadata-driven ad hoc query of clinical studies data
    Deshpande, AM
    Nadkarni, PM
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, : 891 - 891
  • [4] METADATA-DRIVEN DATA MIGRATION FROM OBJECT-RELATIONAL DATABASE TO NOSQL DOCUMENT-ORIENTED DATABASE
    Aggoune, Aicha
    Namoune, Mohamed Sofiane
    COMPUTER SCIENCE-AGH, 2022, 23 (04): : 495 - 519
  • [5] Performance Evaluation of the Metadata-driven MASi Research Data Management Repository Service
    Grunzke, Richard
    Mueller-Pfefferkorn, Ralph
    Nagel, Wolfgang E.
    Hartmann, Volker
    Jejkal, Thomas
    Kollai, Helen
    Herold, Hendrik
    Meinel, Gotthard
    Dressler, Christiane
    Dolhoff, Julia
    Schrade, Torsten
    Stanek, Julia
    Hoffmann, Alexander
    Herres-Pawlis, Sonja
    2018 26TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2018), 2018, : 334 - 338
  • [6] An Architecture for Metadata-driven Integration of Heterogeneous Sensor and Health Data for Translational Exposomic Research
    Gouripeddi, Ramkiran
    Le-Thuy Tran
    Madsen, Randy
    Gangadhar, Tanvi
    Mo, Peter
    Burnett, Nicole
    Butcher, Ryan
    Sward, Katherine
    Facelli, Julio
    2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [7] Metadata-driven ad hoc query of patient data: Meeting the needs of clinical studies
    Deshpande, AM
    Brandt, C
    Nadkarni, PM
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2002, 9 (04) : 369 - 382
  • [8] Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences
    Crasto, C
    Marenco, L
    Miller, P
    Shepherd, G
    NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 354 - 360
  • [9] The MASi repository service - Comprehensive, metadata-driven and multi-community research data management
    Grunzke, Richard
    Hartmann, Volker
    Jejkal, Thomas
    Kollai, Helen
    Prabhune, Ajinkya
    Herold, Hendrik
    Deicke, Aline
    Dressler, Christiane
    Dolhoff, Julia
    Stanek, Julia
    Hoffmann, Alexander
    Mueller-Pfefferkorn, Ralph
    Schrade, Torsten
    Meinel, Gotthard
    Herres-Pawlis, Sonja
    Nagel, Wolfgang E.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 94 : 879 - 894
  • [10] Self-Service, On-Demand Creation of OLAP Cubes over Big Data: a Metadata-Driven Approach
    Latreche, Othmane
    Boukraa, Doulkifli
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2907 - 2914