Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

被引:8
|
作者
Liu, Qingyi [1 ,2 ]
Mohy-ud-Din, Hassan [2 ]
Boutagy, Nabil E. [3 ]
Jiang, Mingyan [1 ]
Ren, Silin [4 ]
Stendahl, John C. [3 ]
Sinusas, Albert J. [2 ,3 ]
Liu, Chi [2 ,4 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
[2] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT 06520 USA
[3] Yale Univ, Dept Internal Med Cardiol, New Haven, CT 06520 USA
[4] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2017年 / 62卷 / 10期
基金
中国国家自然科学基金;
关键词
multi-atlas based segmentation; partial volume correction; cardiac SPECT/CT; MR-IMAGES; LABEL FUSION; REGISTRATION; PET/CT;
D O I
10.1088/1361-6560/aa6520
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine Tc-99m-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.
引用
收藏
页码:3944 / 3957
页数:14
相关论文
共 50 条
  • [1] Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach
    Kirisli, Hortense A.
    Schaap, Michiel
    Klein, Stefan
    Neefjes, Lisan A.
    Weustink, Annick C.
    van Walsum, Theo
    Niessen, Wiro J.
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [2] Feasibility of Automatic Multi-Atlas Based Cardiac Segmentation in Planning CT
    Finnegan, R. N.
    Dowling, J. A.
    Holloway, L.
    Otton, J.
    Koh, E. S.
    Luo, C.
    Satchithanandha, A.
    Atluri, P.
    Tang, S.
    Delaney, G. P.
    Batumalai, V.
    Thwaites, D. I.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1171 - S1172
  • [3] Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation
    Zhou, R.
    Yang, J.
    Pan, T.
    Milgrom, S.
    Pinnix, C.
    Shi, A.
    Yang, J.
    Liu, Y.
    Nguyen, Q.
    Gomez, D.
    Dabaja, B.
    Baiter, P.
    Court, L.
    Liao, Z.
    MEDICAL PHYSICS, 2015, 42 (06) : 3294 - 3294
  • [4] Multi-atlas cardiac PET segmentation
    Kim, Sally Ji Who
    Seo, Seongho
    Kim, Hyeon Sik
    Kim, Dong-Yeon
    Kang, Keon Wook
    Min, Jung-Joon
    Lee, Jae Sung
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 58 : 32 - 39
  • [5] Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach
    Shahzad, Rahil
    Bos, Daniel
    Metz, Coert
    Rossi, Alexia
    Kirisli, Hortense
    van der Lugt, Aad
    Klein, Stefan
    Witteman, Jacqueline
    de Feyter, Pim
    Niessen, Wiro
    van Vliet, Lucas
    van Walsum, Theo
    MEDICAL PHYSICS, 2013, 40 (09)
  • [6] A fully automatic multi-atlas based segmentation method for prostate MR images
    Tian, Zhiqiang
    Liu, LiZhi
    Fei, Baowei
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [7] Automatic Multi-Atlas Liver Segmentation and Couinaud Classification from CT Volumes
    Pla-Alemany, Sofia
    Antonio Romero, Juan
    Manuel Santabarbara, Jose
    Aliaga, Roberto
    Maceira, Alicia M.
    Moratal, David
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2826 - 2829
  • [8] Automatic Kidney Segmentation in CT Images based on Multi-atlas Image Registration
    Yang, Guanyu
    Gu, Jinjin
    Chen, Yang
    Liu, Wangyan
    Tang, Lijun
    Shu, Huazhong
    Toumoulin, Christine
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 5538 - 5541
  • [9] AUTOMATIC MULTI-ATLAS SEGMENTATION USING DUAL REGISTRATIONS
    Suh, J. W.
    Schaap, M.
    Lee, A.
    Do, N.
    Ahiekpor-Dravi, A.
    Bai, Y.
    Choi, G.
    Moreau-Gobard, R.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1284 - 1287
  • [10] Noise suppressed partial volume correction for cardiac SPECT/CT
    Chan, Chung
    Liu, Hui
    Grobshtein, Yariv
    Stacy, Mitchel R.
    Sinusas, Albert J.
    Liu, Chi
    MEDICAL PHYSICS, 2016, 43 (09) : 5225 - 5239