ON TWO-SIDED MONOGENIC FUNCTIONS OF AXIAL TYPE

被引:2
|
作者
Pena, Dixan Pena [1 ]
Sabadini, Irene [1 ]
Sommen, Frank [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Ghent, Fac Engn & Architecture, Clifford Res Grp, Dept Math Anal, Galglaan 2, B-9000 Ghent, Belgium
关键词
Two-sided monogenic functions; plane waves; Vekua systems; Funk-Hecke's formula;
D O I
10.17323/1609-4514-2017-17-1-129-143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study two-sided (left and right) axially symmetric solutions of a generalized Cauchy Riemann operator. We present three methods to obtain special solutions: via the Cauchy-Kowalevski extension theorem, via plane wave integrals and Funk Hecke's formula and via primitivation. Each of these methods is effective enough to generate all the polynomial solutions.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 50 条
  • [1] Vekua-Type Systems Related to Two-Sided Monogenic Functions
    Dixan Peña Peña
    Frank Sommen
    Complex Analysis and Operator Theory, 2012, 6 : 397 - 405
  • [2] Vekua-Type Systems Related to Two-Sided Monogenic Functions
    Pena, Dixan Pena
    Sommen, Frank
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (02) : 397 - 405
  • [3] Two-Sided Hypergenic Functions
    Eriksson, Sirkka-Liisa
    Orelma, Heikki
    Vieira, Nelson
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (01) : 111 - 123
  • [4] Two-Sided Hypergenic Functions
    Sirkka-Liisa Eriksson
    Heikki Orelma
    Nelson Vieira
    Advances in Applied Clifford Algebras, 2017, 27 : 111 - 123
  • [5] Two-sided hardy-type inequalities for monotone functions
    Stepanov, V. D.
    Persson, L. E.
    Popova, O. V.
    DOKLADY MATHEMATICS, 2009, 80 (03) : 814 - 817
  • [6] Two-sided Hardy-type inequalities for monotone functions
    Persson, Lars-Erik
    Popova, Olga V.
    Stepanov, Vladimir D.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 973 - 989
  • [7] Two-sided hardy-type inequalities for monotone functions
    V. D. Stepanov
    L. E. Persson
    O. V. Popova
    Doklady Mathematics, 2009, 80 : 814 - 817
  • [8] TWO-SIDED INEQUALITIES FOR THE LEMNISCATE FUNCTIONS
    Neuman, Edward
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2010, 1 (02): : 1 - 7
  • [9] One-sided and two-sided Green’s functions
    Rubens de Figueiredo Camargo
    Ary Orozimbo Chiacchio
    Edmundo Capelas de Oliveira
    Boundary Value Problems, 2013
  • [10] One-sided and two-sided Green's functions
    Camargo, Rubens de Figueiredo
    Chiacchio, Ary Orozimbo
    de Oliveira, Edmundo Capelas
    BOUNDARY VALUE PROBLEMS, 2013,