Catalan triangulations of the Mobius band

被引:9
|
作者
Edelman, PH [1 ]
Reiner, V [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
05C30; 52B70; 57M20; 57Q15;
D O I
10.1007/BF03353000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Catalan triangulation of the Mobius band is an abstract simplicial complex triangulating the Mobius band which uses no interior vertices, and has vertices labelled 1, 2,..., n in order as one traverses the boundary. We prove two results about the structure of this set, analogous to well-known results for Catalan triangulations of the disk. The first is a generating function for Catalan triangulations of M having n vertices, and the second is that any two such triangulations are connected by a sequence of diagonal-flips.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条
  • [1] Catalan Triangulations of the Möbius Band
    Paul H. Edelman
    Victor Reiner
    Graphs and Combinatorics, 1997, 13 : 231 - 243
  • [2] TRIANGULATIONS IN MOBIUS GEOMETRY
    LUO, F
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) : 181 - 193
  • [3] Counting Non-separable Near-triangulations on the Mobius Band
    Ren Han Liu Yanpei and Liu Tongyin (Department of Mathematics
    NortheasternMathematicalJournal, 1999, (01) : 115 - 120
  • [4] GEOMETRIC REALIZATION OF MOBIUS TRIANGULATIONS
    Jose Chavez, Maria
    Fijavz, Gasper
    Marquez, Alberto
    Nakamoto, Atsuhiro
    Suarez, Esperanza
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 23 (01) : 221 - 232
  • [5] On geometrically realizable Mobius triangulations
    Nakamoto, Atsuhiro
    Tsuchiya, Shoichi
    DISCRETE MATHEMATICS, 2012, 312 (14) : 2135 - 2139
  • [6] Ears of triangulations and Catalan numbers
    Hurtado, F
    Noy, M
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 319 - 324
  • [7] Acute Triangulations of Flat Mobius Strips
    Liping Yuan
    Tudor Zamfirescu
    Discrete & Computational Geometry, 2007, 37 : 671 - 676
  • [8] Acute triangulations of flat Mobius strips
    Yuan, Liping
    Zamfirescu, Tudor
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (04) : 671 - 676
  • [9] Intervals in Catalan lattices and realizers of triangulations
    Bernardi, Olivier
    Bonichon, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (01) : 55 - 75
  • [10] Decomposition of Catalan numbers and convex polygon triangulations
    Stanimirovic, Predrag S.
    Krtolica, Predrag V.
    Saracevic, Muzafer H.
    Masovic, Sead H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (06) : 1315 - 1328