A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations

被引:17
|
作者
Zuniga-Aguilar, C. J. [1 ]
Gomez-Aguilar, J. F. [2 ]
Escobar-Jimenez, R. F. [1 ]
Romero-Ugalde, H. M. [3 ]
机构
[1] Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CENIDET, CONACyT, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Diabeloop SA, 155 Cours Berriat, F-38000 Grenoble, France
关键词
Fractional calculus; Mittag-Leffler kernel; Lagrange interpolation; Fractional delay differential equations; Variable-order fractional operators; NUMERICAL PATTERNS; SYSTEM; CAPUTO; CHAOS;
D O I
10.1016/j.chaos.2019.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we present a novel numerical method based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation to solve numerically fractional delay differential equations. We focus on the fractional derivative with power-law, exponential decay and Mittag-Leffler kernel of Liouville-Caputo type with constant and variable-order. The numerical methods were applied to simulate the Duffing attractor, El-Nino/Southern-Oscillation, and Ikeda systems. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 282
页数:17
相关论文
共 50 条