Match-length functions for data compression

被引:5
|
作者
Gavish, A [1 ]
Lempel, A [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT COMP SCI,IL-32000 HAIFA,ISRAEL
关键词
lossless data compression; LZ methods; string matching;
D O I
10.1109/18.532879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate uniquely decodable match-length functions (in short, MLF's) in conjunction with Lempel-Ziv (LZ)-type data compression, An MLF of a data string is a function that associates a nonnegative integer with each position of the string. The MLF is used to parse the input string into phrases, The codeword for each phrase consists of a pointer to the beginning of a maximal match consistent with the MLF value at that point, We propose several sliding-window variants of LZ compression employing different MLF strategies. We show that the proposed methods are asymptotically optimal for stationary ergodic sources and that their convergence compares favorably with the LZ1 variant of Wyner and Ziv.
引用
收藏
页码:1375 / 1380
页数:6
相关论文
共 50 条
  • [1] Multi-value match length functions for data compression
    Khosravifard, SM
    Nasiri-Kenari, M
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 345 - 345
  • [2] ANALYSIS OF RAYLEIGH MATCH DATA WITH PSYCHOMETRIC FUNCTIONS
    SWANSON, WH
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (08): : 1807 - 1817
  • [3] An efficient parallelization of longest prefix match and application on data compression
    Ozsoy, Adnan
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2016, 30 (03): : 276 - 289
  • [4] Run Length Encoding for Speech Data Compression
    Arif, Mohammad
    Anand, R. S.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 682 - 686
  • [5] The Preimage Security of Double-Block-Length Compression Functions
    Armknecht, Frederik
    Fleischmann, Ewan
    Krause, Matthias
    Lee, Jooyoung
    Stam, Martijn
    Steinberger, John
    [J]. ADVANCES IN CRYPTOLOGY - ASIACRYPT 2011, 2011, 7073 : 233 - +
  • [6] Fractal interpolation functions and data compression for tracking
    J. Li
    P. Yip
    E. Bossé
    [J]. Circuits, Systems and Signal Processing, 1997, 16 : 59 - 67
  • [8] Fractal interpolation functions and data compression for tracking
    Li, J
    Yip, P
    Bosse, E
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1997, 16 (01) : 59 - 67
  • [9] Compression of Geometric Data with the Use of Perturbation Functions
    Vyatkin, S. I.
    Dolgovesov, B. S.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2018, 54 (04) : 334 - 339
  • [10] Data Transformation by Segments with Fixed Length for Compression Tasks
    Un, Chye En
    Fedyaev, Alexandr U.
    Levenets, Alexey V.
    [J]. 2015 INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS (SIBCON), 2015,