Variations of Andrews-Beck type congruences

被引:20
|
作者
Chan, Song Heng [1 ]
Mao, Renrong [2 ]
Osburn, Robert [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
[3] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
基金
中国国家自然科学基金;
关键词
Andrews-Beck type congruences; Rank for overpartition pairs; Dyson's rank for overpartitions; M-2-rank for overpartitions; M-2-rank for partitions without repeated odd parts; FROBENIUS REPRESENTATION; RANK; CONJUGATION; M-2-RANK; DYSONS;
D O I
10.1016/j.jmaa.2020.124771
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove three variations of recent results due to Andrews on congruences for NT(m, k, n), the total number of parts in the partitions of n with rank congruent to m modulo k. We also conjecture new congruences and relations for NT(m,k,n) and for a related crank-type function. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Andrews-Beck type congruences for overpartitions
    Kim, Eunmi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [2] Andrews-Beck type congruences modulo powers of 5
    Nankun Hong
    Renrong Mao
    The Ramanujan Journal, 2024, 64 : 79 - 91
  • [3] Andrews-Beck type congruences modulo powers of 5
    Hong, Nankun
    Mao, Renrong
    RAMANUJAN JOURNAL, 2024, 64 (01): : 79 - 91
  • [4] Andrews-Beck Type Congruences Modulo 2 and 4 for Beck's Partition Statistics
    Xuan, Yu
    Yao, Olivia X. M.
    Zhou, Xinyuan
    RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [5] Congruences for Andrews-Beck partition statistics modulo powers of primes
    Mao, Renrong
    ADVANCES IN APPLIED MATHEMATICS, 2023, 146
  • [6] Proofs of two conjectural Andrews-Beck type congruences due to Lin, Peng and Toh
    Du, Julia Q. D.
    Tang, Dazhao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (06) : 1387 - 1404
  • [7] Andrews-Beck type congruences modulo arbitrary powers of 5 for 2-colored partitions
    Lin, Yang
    Yao, Olivia X. M.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 2169 - 2185
  • [8] Weighted generalized crank moments for k-colored partitions and Andrews-Beck type congruences
    Lin, Bernard L. S.
    Peng, Lin
    Toh, Pee Choon
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [9] A modular approach to Andrews-Beck partition statistics
    Mao, Renrong
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 203
  • [10] Andrews–Beck Type Congruences Modulo 2 and 4 for Beck’s Partition Statistics
    Yu Xuan
    Olivia X. M. Yao
    Xinyuan Zhou
    Results in Mathematics, 2023, 78