On the number of conjugacy classes of π-elements in finite groups

被引:6
|
作者
Maroti, Attila [1 ,2 ]
Hung Ngoc Nguyen [3 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Tech Univ Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
[3] Univ Akron, Dept Math, Akron, OH 44325 USA
关键词
Finite groups; Conjugacy classes; pi-elements; PROBABILITY;
D O I
10.1007/s00013-014-0615-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and pi be a set of primes. Put , where is the number of conjugacy classes of pi-elements in G and |G| (pi) is the pi-part of the order of G. In this paper we initiate the study of this invariant by showing that if then G possesses an abelian Hall pi-subgroup, all Hall pi-subgroups of G are conjugate, and every pi-subgroup of G lies in some Hall pi-subgroup of G. Furthermore, we have or . This extends and generalizes a result of W. H. Gustafson.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条