A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network

被引:32
|
作者
Weinstein, Ben G. [1 ]
Marconi, Sergio [1 ]
Bohlman, Stephanie A. [2 ]
Zare, Alina [3 ]
Singh, Aditya [4 ]
Graves, Sarah J. [5 ]
White, Ethan P. [1 ,6 ,7 ]
机构
[1] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA
[2] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
[4] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL USA
[5] Univ Wisconsin, Nelson Inst Environm Studies, Madison, WI USA
[6] Univ Florida, Informat Inst, Gainesville, FL USA
[7] Univ Florida, Biodivers Inst, Gainesville, FL USA
来源
ELIFE | 2021年 / 10卷
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
FOREST STRUCTURE; DIVERSITY; DENSITY; IMAGERY; FIELD;
D O I
10.7554/eLife.62922
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Forests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information. Using deep learning methods, we produced an open-source data set of individual-level crown estimates for 100 million trees at 37 sites across the United States surveyed by the National Ecological Observatory Network's Airborne Observation Platform. Each canopy tree crown is represented by a rectangular bounding box and includes information on the height, crown area, and spatial location of the tree. These data have the potential to drive significant expansion of individual-level research on trees by facilitating both regional analyses and cross-region comparisons encompassing forest types from most of the United States.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 33 条
  • [1] Individual canopy tree species maps for the National Ecological Observatory Network
    Weinstein, Ben G.
    Marconi, Sergio
    Zare, Alina
    Bohlman, Stephanie A.
    Singh, Aditya
    Graves, Sarah J.
    Magee, Lukas
    Johnson, Daniel J.
    Record, Sydne
    Rubio, Vanessa E.
    Swenson, Nathan G.
    Townsend, Philip
    Veblen, Thomas T.
    Andrus, Robert A.
    White, Ethan P.
    PLOS BIOLOGY, 2024, 22 (07)
  • [2] Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification
    Scholl, Victoria M.
    Cattau, Megan E.
    Joseph, Maxwell B.
    Balch, Jennifer K.
    REMOTE SENSING, 2020, 12 (09)
  • [3] Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network
    Kampe, Thomas U.
    McCorkel, Joel
    Hamlin, Louise
    Green, Robert O.
    Krause, Keith S.
    Johnson, Brian R.
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VIII, 2011, 8156
  • [4] Linking urban tree inventories to remote sensing data for individual tree mapping
    Wallace, Luke
    Sun, Qian
    Hally, Bryan
    Hillman, Samuel
    Both, Alan
    Hurley, Joe
    Saldias, Daisy San Martin
    URBAN FORESTRY & URBAN GREENING, 2021, 61
  • [5] TIME SERIES ANALYSIS OF VEGETATION PHENOLOGY AND CLOUD COVER CONDITIONS AFFECTING AIRBORNE REMOTE SENSING OPERATIONS AND DATA PRODUCTS FROM THE NATIONAL ECOLOGICAL OBSERVATORY NETWORK (NEON)
    Musinsky, John
    Haynes, Mitch
    Goulden, Tristan
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5920 - 5923
  • [6] NATIONAL ECOLOGICAL OBSERVATORY NETWORK (NEON) AIRBORNE REMOTE MEASUREMENTS OF VEGETATION CANOPY BIOCHEMISTRY AND STRUCTURE
    Johnson, Brian R.
    Kuester, Michele A.
    Kampe, Thomas U.
    Keller, Michael
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2079 - 2082
  • [7] CanopyShotNoise - An individual-based tree canopy modelling framework for projecting remote-sensing data and ecological sensitivity analysis
    Pommerening, Arne
    Gaulton, Rachel
    Magdon, Paul
    Myllymaki, Mari
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (18) : 6837 - 6865
  • [8] Enabling integrative biology with data and collections from the National Ecological Observatory Network (NEON)
    Mabee, P. M.
    Thibault, K. M.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2023, 62 : S193 - S194
  • [9] Continental-scale hyperspectral tree species classification in the United States National Ecological Observatory Network
    Marconi, Sergio
    Weinstein, Ben G.
    Zou, Sheng
    Bohlman, Stephanie A.
    Zare, Alina
    Singh, Aditya
    Stewart, Dylan
    Harmon, Ira
    Steinkraus, Ashley
    White, Ethan P.
    REMOTE SENSING OF ENVIRONMENT, 2022, 282
  • [10] Individual Tree Crown Methods for 3D Data from Remote Sensing
    Lindberg, Eva
    Holmgren, Johan
    CURRENT FORESTRY REPORTS, 2017, 3 (01): : 19 - 31