Positive solution for singular boundary value problems

被引:11
|
作者
Wong, FH [1 ]
Lian, WC [1 ]
机构
[1] NATL CENT UNIV,DEPT MATH,CHUNGLI 32054,TAIWAN
关键词
boundary value problems; positive solution; locally Lipschitz continuous;
D O I
10.1016/0898-1221(96)00175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sufficient condition for the existence of positive solutions of the nonlinear boundary value problem u ''(t) + f(t, u(t)) = 0, 0 < t < 1, u'(0) = u(1) = 0 is constructed, where f : [0, 1) x (0, infinity) --> (0, infinity) is continuous, f(t, u) is locally Lipschitz continuous, and f(t, u)/u is strictly decreasing in u > 0 for each t is an element of (0, 1).
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [2] UNIQUENESS OF THE POSITIVE SOLUTION FOR SINGULAR NONLINEAR BOUNDARY VALUE PROBLEMS
    DENG Yinbin
    CAO Daomin Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 1993, (01) : 25 - 31
  • [3] Positive solution of singular boundary value problems on a half-line
    Wei Z.-L.
    Chen S.-Z.
    [J]. Acta Mathematicae Applicatae Sinica, 2005, 21 (4) : 553 - 564
  • [4] The Unique Positive Solution for Singular Hadamard Fractional Boundary Value Problems
    Mao, Jinxiu
    Zhao, Zengqin
    Wang, Chenguang
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [5] Positive solutions of singular boundary value problems
    Dalmasso, R
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (06) : 645 - 652
  • [6] POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES
    Miao, Chunmei
    Ji, Dehong
    Zhao, Junfang
    Ge, Weigao
    Zhang, Jiani
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2009, 16 (04): : 327 - 344
  • [7] Solution of a class of singular boundary value problems
    Mittal, Ramesh Chand
    Nigam, Ruchi
    [J]. NUMERICAL ALGORITHMS, 2008, 47 (02) : 169 - 179
  • [8] Solution of a class of singular boundary value problems
    Ramesh Chand Mittal
    Ruchi Nigam
    [J]. Numerical Algorithms, 2008, 47 : 169 - 179
  • [9] Structure of positive solution sets of semi-positone singular boundary value problems
    Xu Xian
    O'Regan, Donal
    Chen Yanfang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3535 - 3550
  • [10] Positive solutions for nonlinear singular boundary value problems
    Agarwal, RP
    Wong, FH
    Lian, WC
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (02) : 115 - 120