A proximal point algorithm for DC fuctions on Hadamard manifolds

被引:21
|
作者
Souza, J. C. O. [1 ,2 ]
Oliveira, P. R. [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE Sistemas, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Piaui, CEAD, Teresina, PI, Brazil
关键词
Nonconvex optimization; Proximal point algorithm; DC functions; Hadamard manifolds; VARIATIONAL-INEQUALITIES; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; NEWTONS METHOD; MONOTONE; CONVERGENCE;
D O I
10.1007/s10898-015-0282-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An extension of a proximal point algorithm for difference of two convex functions is presented in the context of Riemannian manifolds of nonposite sectional curvature. If the sequence generated by our algorithm is bounded it is proved that every cluster point is a critical point of the function (not necessarily convex) under consideration, even if minimizations are performed inexactly at each iteration. Application in maximization problems with constraints, within the framework of Hadamard manifolds is presented.
引用
收藏
页码:797 / 810
页数:14
相关论文
共 50 条
  • [1] A proximal point algorithm for DC fuctions on Hadamard manifolds
    J. C. O. Souza
    P. R. Oliveira
    [J]. Journal of Global Optimization, 2015, 63 : 797 - 810
  • [2] ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM ON HADAMARD MANIFOLDS
    Ahmadi, P.
    Khatibzadeh, H.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 419 - 433
  • [3] A modified proximal point method for DC functions on Hadamard manifolds
    Yldenilson Torres Almeida
    João Xavier da Cruz Neto
    Paulo Roberto Oliveira
    João Carlos de Oliveira Souza
    [J]. Computational Optimization and Applications, 2020, 76 : 649 - 673
  • [4] A modified proximal point method for DC functions on Hadamard manifolds
    Almeida, Yldenilson Torres
    da Cruz Neto, Joao Xavier
    Oliveira, Paulo Roberto
    Souza, Joao Carlos de Oliveira
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) : 649 - 673
  • [5] An extension of the proximal point algorithm with Bregman distances on Hadamard manifolds
    Papa Quiroz, E. A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (01) : 43 - 59
  • [6] Proximal point algorithm for inclusion problems in Hadamard manifolds with applications
    Qamrul Hasan Ansari
    Feeroz Babu
    [J]. Optimization Letters, 2021, 15 : 901 - 921
  • [7] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Guo-ji Tang
    Li-wen Zhou
    Nan-jing Huang
    [J]. Optimization Letters, 2013, 7 : 779 - 790
  • [8] Monotone vector fields and the proximal point algorithm on Hadamard manifolds
    Li, Chong
    Lopez, Genaro
    Martin-Marquez, Victoria
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 663 - 683
  • [9] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Tang, Guo-ji
    Zhou, Li-wen
    Huang, Nan-jing
    [J]. OPTIMIZATION LETTERS, 2013, 7 (04) : 779 - 790
  • [10] Inertial proximal point algorithm for variational inclusion in Hadamard manifolds
    Chang, Shih-Sen
    Yao, Jen-Chih
    Liu, M.
    Zhao, L. C.
    [J]. APPLICABLE ANALYSIS, 2023, 102 (07) : 2055 - 2066