Comparison of Polarimetric SAR Features for Terrain Classification Using Incremental Training

被引:0
|
作者
Ince, Turker [1 ]
Ahishali, Mete [1 ]
Kiranyaz, Serkan [2 ]
机构
[1] Izmir Univ Econ, Dept Elect & Elect Engn, Izmir, Turkey
[2] Qatar Univ, Dept Elect Engn, Doha, Qatar
关键词
UNSUPERVISED CLASSIFICATION; DECOMPOSITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the most commonly used polarimetric SAR features including the complete coherency (or covariance) matrix information, features obtained from several coherent and incoherent target decompositions, the backscattering power and the visual texture features are compared in terms of their classification performance of different terrain classes. For pattern recognition, two powerful machine learning techniques, Collective Network of Binary Classifier (CNBC) with incremental training capability and Support Vector Machines (SVM) are employed. Each feature has its own strength and weaknesses for discriminating different SAR class types and this study aims to investigate them through incremental feature based training of both classifiers and compare the results of the experiments performed using the fully polarimetric San Francisco Bay and Flevoland datasets.
引用
收藏
页码:3258 / 3262
页数:5
相关论文
共 50 条
  • [1] Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification
    Ahishali, Mete
    Ince, Turker
    Kiranyaz, Serkan
    Gabbouj, Moncef
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2317 - 2324
  • [2] Terrain classification in polarimetric SAR using wavelet packets
    Keshava, N
    Moura, J
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 555 - 558
  • [3] Polarimetric SAR Image Terrain Classification
    West, R. Derek
    LaBruyere, Thomas E., III
    Skryzalin, Jacek
    Simonson, Katherine M.
    Hansen, Ross L.
    Van Benthem, Mark H.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (11) : 4467 - 4485
  • [4] Terrain and Surface Modeling Using Polarimetric SAR Data Features
    Sabry, Ramin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (02): : 1170 - 1184
  • [5] Review on polarimetric SAR terrain classification methods using deep learning
    Xie, Wen
    Hua, Wenqiang
    Jiao, Licheng
    Wang, Ruonan
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (03): : 151 - 170
  • [6] Fuzzy classification of earth terrain covers using complex polarimetric SAR data
    Du, L
    Lee, JS
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (04) : 809 - 826
  • [7] A Study of Land Terrain Classification Using Polarimetric SAR Images Based on DTC
    Ijjada, Sreenivasa Rao
    Dharmireddy, Ajay Kumar
    Mannepalli, Chaithanya
    Shashidhar, K.
    Adupa, Chakradhar
    [J]. BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02): : 59 - 66
  • [8] LAND COVER CLASSIFICATION USING RADIOMETRIC-TERRAIN-CALIBRATED POLARIMETRIC SAR IMAGES
    Xu, Jinyan
    Liao, Mingsheng
    Zhang, Lu
    Yang, Xinwei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4710 - 4713
  • [9] OPTICAL AND POLARIMETRIC SAR DATA FUSION TERRAIN CLASSIFICATION USING PROBABILISTIC FEATURE FUSION
    West, R. Derek
    Yocky, David A.
    Redman, Brian J.
    van der Laan, John D.
    Anderson, Dylan Z.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2097 - 2100
  • [10] POLARIMETRIC SAR TERRAIN CLASSIFICATION USING 3D CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lamei
    Chen, Zexi
    Zou, Bin
    Gao, Ye
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4551 - 4554