Gaussian interferometric power in the localized two-mode Gaussian states

被引:1
|
作者
Fang, Yue [1 ,2 ]
Liu, Xiaobao [1 ,2 ]
Wang, Jieci [1 ,2 ]
Tian, Zehua [3 ,4 ,5 ,6 ]
Jing, Jiliang [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Hunan, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian interferometric power; Relativistic motion; Quantum Fisher information; QUANTUM INFORMATION;
D O I
10.1007/s11128-019-2359-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With localized two-mode Gaussian quantum states in a relativistic setting, we study how to use the Gaussian interferometric power, which is given by the minimum quantum Fisher information, to guarantee the precision of the estimation of the Unruh temperature. We note that the interferometric power will be reduced with increase in the Unruh temperature because the Unruh radiation acts as a thermal bath on the probe state and it will destroy available quantum resources. By comparing the interferometric power with the entanglement, we also find that the larger squeezing parameter, the more similar the variation of entanglement and interferometric power. The maximum value of entanglement and interferometric power appears in the same condition. That is, for the states with larger entanglement, we can get higher precision of estimation. Moreover, we find that the interferometric power remains nonzero even for high Unruh temperature. This reflects the robust behavior of the Gaussian interferometric power against thermal noises.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gaussian interferometric power in the localized two-mode Gaussian states
    Yue Fang
    Xiaobao Liu
    Jieci Wang
    Zehua Tian
    Jiliang Jing
    [J]. Quantum Information Processing, 2019, 18
  • [2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
    龚小龙
    曹硕
    方越
    刘统华
    [J]. Chinese Physics B, 2022, (05) : 226 - 233
  • [3] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
    Gong, Xiao-Long
    Cao, Shuo
    Fang, Yue
    Liu, Tong-Hua
    [J]. CHINESE PHYSICS B, 2022, 31 (05)
  • [4] Gaussian entanglement of symmetric two-mode Gaussian states
    Marian, P.
    Marian, T. A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 160 (1): : 281 - 289
  • [5] Gaussian entanglement of symmetric two-mode Gaussian states
    P. Marian
    T. A. Marian
    [J]. The European Physical Journal Special Topics, 2008, 160 : 281 - 289
  • [6] Effect of relativistic acceleration on localized two-mode Gaussian quantum states
    Ahmadi, Mehdi
    Lorek, Krzysztof
    Checinska, Agata
    Smith, Alexander R. H.
    Mann, Robert B.
    Dragan, Andrzej
    [J]. PHYSICAL REVIEW D, 2016, 93 (12)
  • [7] Stabilizing entanglement in two-mode Gaussian states
    Linowski, Tomasz
    Gneiting, Clemens
    Rudnicki, Lukasz
    [J]. PHYSICAL REVIEW A, 2020, 102 (04)
  • [8] Quantifying entanglement in two-mode Gaussian states
    Tserkis, Spyros
    Ralph, Timothy C.
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [9] Mixedness and entanglement for two-mode Gaussian states
    Souza, L. A. M.
    Drumond, R. C.
    Nemes, M. C.
    Fonseca Romero, K. M.
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (21-22) : 4453 - 4456
  • [10] Entanglement of pure two-mode Gaussian states
    Rendell, RW
    Rajagopal, AK
    [J]. PHYSICAL REVIEW A, 2005, 72 (01)