A finite-dimensional Lie algebra arising from a Nichols algebra of diagonal type (rank 2)

被引:5
|
作者
Andruskiewitsch, Nicolas [1 ]
Angiono, Ivan [1 ]
Rossi Bertone, Fiorela [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, FaMAF CIEM, Medina Allende S-N,Ciudad Univ, RA-5000 Cordoba, Argentina
关键词
QUANTUM GROUPS;
D O I
10.36045/bbms/1489888813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-q be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix q is an element of k (theta x theta). Let L-q be the Lusztig algebra associated to B-q [AAR]. We present L-q as an extension (as braided Hopf algebras) of B-q by 3q where 3(q) is isomorphic to the universal enveloping algebra of a Lie algebra n(q). We compute the Lie algebra nq when theta = 2.
引用
收藏
页码:15 / 34
页数:20
相关论文
共 50 条